
Discussion 02
Environment Diagrams and Recursion

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

x

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

x

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

x
function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

x
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx
evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

we have a function call, leave a mark where to return to
once you complete f3

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

we have a function call, leave a mark where to return to
once you complete f3

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement

we have a function call, leave a mark where to return to
once you complete f3

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

f4

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement
we have another function call, leave a mark where to
return to once you complete f4

we have a function call, leave a mark where to return to
once you complete f3

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

f4

f4: h [P=f2]

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement
we have another function call, leave a mark where to
return to once you complete f4

we have a function call, leave a mark where to return to
once you complete f3

y is really h, and h just adds x and 1 and returns the
sum. we can find x in f2 since that is the parent of h

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

f4

f4: h [P=f2]
rv: 15

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement
we have another function call, leave a mark where to
return to once you complete f4

we have a function call, leave a mark where to return to
once you complete f3

y is really h, and h just adds x and 1 and returns the
sum. we can find x in f2 since that is the parent of h

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

f4

rv:

f4: h [P=f2]
rv: 15

15

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement
we have another function call, leave a mark where to
return to once you complete f4

we have a function call, leave a mark where to return to
once you complete f3

y is really h, and h just adds x and 1 and returns the
sum. we can find x in f2 since that is the parent of h

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

f4

rv:

f4: h [P=f2]
rv: 15

15

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement
we have another function call, leave a mark where to
return to once you complete f4

we have a function call, leave a mark where to return to
once you complete f3

y is really h, and h just adds x and 1 and returns the
sum. we can find x in f2 since that is the parent of h

remember to return back to where we left marks. the
last thing to do is assign the value of the function call to
the name g in G

n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

G
n: 7
f: func f(x) [P = G]
g: func g(x) [P = G]

func f(f, x) [P = G]

f1

f1: f [P=G]
f:
x: 7

evaluate g
look for what the name g is bound to in the current
frame
evaluate n
look for what the name n is bound to in the current
frame

After opening the new frame, bind the parameter names
in the function signature (f, x) to the values we just
evaluated

f2

whatever this function evaluates to is what we return in
f1. leave an indication that this is where you will return
to after completing f2

f2: g [P=G]
x: 14
n: 9
h: func h() [P = f2]
rv:

rv:

xx

what does it mean to evaluate a lambda?

func lambda(y) [P=G]

Checkpoint: why is lambda’s parent G?

f3: lambda [P=G]f3

y:

f4

rv:

f4: h [P=f2]
rv: 15

15

x
15

evaluate f
look for what the name g is bound to in the current
frame

function call!

assignment statement! Evaluate the RHS, then bind the
value to the name on the LHS in the current frame

Leave an indication that this is where in the code you
will come back to after completing the function call

DO NOT OPEN A NEW FRAME UNTIL YOU EVALUATE
THE OPERATOR AND OPERANDS

evaluate operator and operands
note that the operator is f, which is the name of the
parameter we just passed in
note that x is also just passed in and we must look up n
in G
Checkpoint: why is the parent of h, f2?

what type of thing do we return? (hint: what the
difference between h and h()?)

we just assigned f to point to the function h, so we pass
in the function h as y

what does this lambda do? whats the body of the
lambda? try converting the lambda to a normal def
statement
we have another function call, leave a mark where to
return to once you complete f4

we have a function call, leave a mark where to return to
once you complete f3

y is really h, and h just adds x and 1 and returns the
sum. we can find x in f2 since that is the parent of h

remember to return back to where we left marks. the
last thing to do is assign the value of the function call to
the name g in G

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion:

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

n = 3

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

2

n = 3

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

2

n = 3

n = 2

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

2

1

n = 3

n = 2

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

print 2

return 1

Since n is 1, i go into the if statement and return 1
This is how i hop back! Now the only thing i take with me is the 1 that
was returned.

2

1

n = 3

n = 2

n = 1

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

print 2

return 1

Since n is 1, i go into the if statement and return 1
This is how i hop back! Now the only thing i take with me is the 1 that
was returned.

2

1

1

n = 3

n = 2

n = 1

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

print 2

return 1

Since n is 1, i go into the if statement and return 1
This is how i hop back! Now the only thing i take with me is the 1 that
was returned.

2

1

1

1

return 1 + 2 % 2

n = 3

n = 2

n = 1

After you hop back, execute the code after the recursive call.
So we know that count_down(1) returns 1, so we assign num_odds to 1.
Then we return 1 summed with 2 % 2 which is 0.
Note that we have a little trick here. We will only add 1 to num_odds if n
is odd, in which case n % 2 is 1. If n % 2 is 0, then n is even and we
basically add 0 to num_odds.

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

print 2

return 1

Since n is 1, i go into the if statement and return 1
This is how i hop back! Now the only thing i take with me is the 1 that
was returned.

2

1

1

1

return 1 + 2 % 2

1

n = 3

n = 2

n = 1

After you hop back, execute the code after the recursive call.
So we know that count_down(1) returns 1, so we assign num_odds to 1.
Then we return 1 summed with 2 % 2 which is 0.
Note that we have a little trick here. We will only add 1 to num_odds if n
is odd, in which case n % 2 is 1. If n % 2 is 0, then n is even and we
basically add 0 to num_odds.

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

We never got a chance to talk about recursion in depth in discussion, but here is how I like to think about it.

Here are the 3 main parts of recursion: 1. Base case: what is the simplest problem you could be given? Ask yourself, for what input, do I immediately know what
the answer is?

2. Recursive call: how can you simplify the problem? Make sure you are calling the function on a smaller problem
3. Putting it all back together: Now is the hard part, the leap of faith! Assuming your function works correctly (which it

obviously does since you wrote it) how can you use the results of the function call to answer the original question?

But that’s a lot of vague hand waving talk. What does this actually look like? How can you use the above statements in a meaningful way?

Lets do an example. Write a function that prints out all the numbers from n to 1 in decreasing order AND returns the number of odd numbers from n to 1.

def count_down(n):

 print n

 if n == 1:

 return 1

 num_odds = count_down(n-1)

 return num_odds + n % 2

For which n do you know immediately how many odd numbers there are from n to 1? If n is 1, then we know that from 1 to
1 there is just one odd number, 1! So in this case, we will return 1. We just wrote our base case.

How can we make the problem smaller? Well we know we can find out if the current n is even or odd. If we can find out
the number of odd numbers from n - 1 to 1 we can just add 1 to that if we’re odd, or return however many odd numbers
there are from n - 1 to 1 if we’re even. (leap of faith)

Now come back here. Why do we put the print statement here? Notice that we print before doing our recursive call. why?

Here’s what I picture happening whenever I have to do recursion. All the code that you see before the recursive call happens in the current frame. Say we try to do
count_down(3). Let’s walk through what happens

print 3

num_odds = count_down(2)

I picture each recursive call as
jumping down into a hole. I can only
take the parameters with me. So in
this case, when I jump in the hole I
take 2 with me.

print 2

num_odds = count_down(1)
Again, I execute the lines of code that come before the
recursive call.

print 2

return 1

Since n is 1, i go into the if statement and return 1
This is how i hop back! Now the only thing i take with me is the 1 that
was returned.

2

1

1

1

return 1 + 2 % 2

1
return 1 + 3 % 2

1

n = 3

n = 2

n = 1

After you hop back, execute the code after the recursive call.
So we know that count_down(1) returns 1, so we assign num_odds to 1.
Then we return 1 summed with 2 % 2 which is 0.
Note that we have a little trick here. We will only add 1 to num_odds if n
is odd, in which case n % 2 is 1. If n % 2 is 0, then n is even and we
basically add 0 to num_odds.

Again, execute the code after the recursive call

Here we are combining the results of the recursive call in order to answer the original problem. I explain how we do this
later

