
Discussion 1
Walkthrough



Announcements

• Start HOG early! 

• Find partners on Piazza (https://piazza.com/class/
irwl7o7shzu70z?cid=5) 

• My office hours: T/W 4-5 @ 109 Morgan Hall 

• email me at katya.stukalova@berkeley.edu

https://piazza.com/class/irwl7o7shzu70z?cid=5
mailto:katya.stukalova@berkeley.edu


Environment Diagram Rules
1. Assignment
        ex: a = 3 
        1. evaluate the RHS 
        2. assign the value from 
            step 1 to the name on the LHS

G: 
   a : 3



Environment Diagram Rules
1. Assignment
        ex: a = 3 
        1. evaluate the RHS 
        2. assign the value from 
            step 1 to the name on the LHS

G: 
   a : 3 
   f

2. Defining a function
        ex: def f(): 
         return 1 
        1. write function signature 
        2. write the function name 
        3. point the name to the signature 

func f() [P=G]



Environment Diagram Rules
1. Assignment
        ex: a = 3 
        1. evaluate the RHS 
        2. assign the value from 
            step 1 to the name on the LHS

G: 
   a : 3 
   f

2. Defining a function
        ex: def f(): 
         return 1 
        1. write function signature 
        2. write the function name 
        3. point the name to the signature 

func f() [P=G]

3. Function call
        ex: a = f() 
        1. evaluate the operator 
        2. evaluate the operands 
        3. open a new frame 
               - label the frame with: f#, the intrinsic function name, [P=G] 
        4. copy the parameters into the new frame 
               - remember to use the names from the function signature 
        5. execute the body of the function 

f1: f [P=G] 
   r.v.: 1



2.1 #1



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

- the first line is an assignment statement (recall the procedure for 
assignment statements)



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function)



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function)



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function

- there are 2 things in the line following the def statement — an 
assignment and a function call

- do the function call first: whats the operator? the operand?



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

f1: f [P=G]

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

f1: f [P=G]

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

- what parameters do we pass in? why is the name b? why is the 
value 1?

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
G 
     a : 1

f                                       func f(b) [P = G]

f1: f [P=G]
b: 1

- the first line is an assignment statement (recall the procedure for 
assignment statements)
- now we have a def statement (remember to skip the definition of 
the function

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

- what parameters do we pass in? why is the name b? why is the 
value 1?

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1, 2- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1, 2- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call

- run through what happens in the last line of the code, using the 
hints from above



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1, 2- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call

f2: f [P=G]

- run through what happens in the last line of the code, using the 
hints from above



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1, 2- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call

f2: f [P=G]
    b: 2

- run through what happens in the last line of the code, using the 
hints from above



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1, 2- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call

f2: f [P=G]
    b: 2
    r.v.: 4

- run through what happens in the last line of the code, using the 
hints from above



Draw the environment diagram that results from running the following code. 
a = 1 
def b(b): 
     return a + b 
a = b(a) 
a = b(a)

Reasoning Solution
- the first line is an assignment statement (recall the procedure for 
assignment statements)

G 
     a : 1, 2, 4- now we have a def statement (remember to skip the definition of 

the function
f                                       func f(b) [P = G]

- do the function call first: whats the operator? the operand?

- recall what we mean when we say “evaluate”. “evaluate” is 
synonymous to “do i know the value of this name?”  
- do we know the value bound to b? a?

- now we’re ready to open up a new frame (how do we label the 
frame?)

f1: f [P=G]

- what parameters do we pass in? why is the name b? why is the 
value 1?

b: 1

- now we’re ready to execute the body of the function. what do we 
return in this case?

r.v.: 2

- remember where we were when we started doing the function 
call! we were in the middle of an assignment statement. what do 
we need to change in G?

- there are 2 things in the line following the def statement — an 
assignment and a function call

f2: f [P=G]
    b: 2
    r.v.: 4

- run through what happens in the last line of the code, using the 
hints from above



2.1 #2



Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))



                                                                 func min(…) [P=G]

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution



                                                                 func min(…) [P=G]

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)



                                                                 func min(…) [P=G]

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]



                                                                 func min(…) [P=G]

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2, sub(2, 3)))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.



     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

                                                                 func min(…) [P=G]

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.



     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

                                                                 func min(…) [P=G]

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

next is add, which is really sub. we pass in 2 and 2



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?

we look for add in f1. its not there so we look in G. add points to sub. 
the LHS says sub, so we must bind the name sub

     sub



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?

we look for add in f1. its not there so we look in G. add points to sub. 
the LHS says sub, so we must bind the name sub

     sub

- what do we return from sub? whats a? whats b?



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(add(2,    2    ))

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name 
do we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?

we look for add in f1. its not there so we look in G. add points to sub. 
the LHS says sub, so we must bind the name sub

     sub

- what do we return from sub? whats a? whats b?

     r.v.: 0

a=2, b=2 —> a - b = 0



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(       0        )

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name do 
we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?

we look for add in f1. its not there so we look in G. add points to sub. 
the LHS says sub, so we must bind the name sub

     sub

- what do we return from sub? whats a? whats b?

     r.v.: 0

a=2, b=2 —> a - b = 0



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(       0        )

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name do 
we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?

we look for add in f1. its not there so we look in G. add points to sub. 
the LHS says sub, so we must bind the name sub

     sub

- what do we return from sub? whats a? whats b?

     r.v.: 0

a=2, b=2 —> a - b = 0

- finally, what do we print?



                                                                 func min(…) [P=G]
     add

Draw the environment diagram that results from running the following code. 
from operator import add 
def sub(a, b): 
   sub = add 
   return a - b 
add = sub 
sub = min 
print(       0        )

Reasoning
Solution

- ignore the import 
- first line is a def. (write the name and point it at the function signature)

G 
     sub                                                      func sub(a, b) [P=G]

- add = sub is an assignment. whats the value of the LHS? what name do 
we assign to this value?
- sub = min is another assignment. whats the value? whats the name? 
recall that we cannot have the same name bound to 2 values in the same 
frame

x x x

- now we will walk through the order of function calls. remember, operator 
then operands! 
- what’s the first function we call? what’s that functions intrinsic name? do 
we need to draw a frame for this function?

the first function we call is sub, which is really min. 
min is built in so we do not need to draw a frame.

- what’s the next function we call? what’s its intrinsic name? what 
arguments do we pass in? 

f1: sub [P=G] 
     a: 2 
     b: 2

next is add, which is really sub. we pass in 2 and 2
- now we are ready to execute the body of the function. sub = add is an 
assignment statement. whats the value of the RHS? what name do we bind?

we look for add in f1. its not there so we look in G. add points to sub. 
the LHS says sub, so we must bind the name sub

     sub

- what do we return from sub? whats a? whats b?

     r.v.: 0

a=2, b=2 —> a - b = 0

- finally, what do we print? 0



Higher Order Functions
What is a higher order function?



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1inner is 
defined 
inside outer, 
so its parent 
is outer



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

inner is 
defined 
inside outer, 
so its parent 
is outer



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)

inner is 
defined in 
G, so its 
parent is G



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1 1

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)

inner is 
defined in 
G, so its 
parent is G



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1 1

3inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)

inner is 
defined in 
G, so its 
parent is G



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1 1

3 when inner looks 
for x, it will look in 
its parent, which is 
G 
note this is 
different from the 
code on the left!

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)

inner is 
defined in 
G, so its 
parent is G



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1 1

3 when inner looks 
for x, it will look in 
its parent, which is 
G 
note this is 
different from the 
code on the left!

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)

inner is 
defined in 
G, so its 
parent is G

2



Higher Order Functions
What is a higher order function?

Any function that manipulates other functions.

How can we manipulate other functions?

Pass a function in as an argument. 
Return a function 
Both.

You already worked with higher order functions in Lab01! Remember repeated?

Ex: What does the code on the left print? right? 
x = 2 
def outer(x): 
   def inner(y): 
      print(x) 
   return inner 

outer(1)(3)

x = 2 
def inner(y): 
      print(x) 
def outer(x): 
   return inner 

outer(1)(3)

1
3

1 1

3 when inner looks 
for x, it will look in 
its parent, which is 
G 
note this is 
different from the 
code on the left!

inner is 
defined 
inside outer, 
so its parent 
is outer so when inner 

looks for x, it 
will look in its 
parent (outer)

inner is 
defined in 
G, so its 
parent is G

Code on the left will print 1. Code on the right will print 2.

2



3.4 #1



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

Reasoning



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

- first we call outer. what do we pass in as the argument?

Reasoning



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

61
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

10
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>

- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

10
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>

- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

4



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

10
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>

- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

4

- what is n - m?



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

10
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>

- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

10 4



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

10
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>

- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

6

10 4



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

10
- first we call outer. what do we pass in as the argument?

Reasoning

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function

<func …>

- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

6

- try the last line! keep track of what n and m are

10 4



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

Reasoning

<func …>

6

- first we call outer. what do we pass in as the argument?

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function
- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

- try the last line! keep track of what n and m are



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

5

Reasoning

<func …>

6

- first we call outer. what do we pass in as the argument?

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function
- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

- try the last line! keep track of what n and m are



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

5

Reasoning

<func …>

4

6

- first we call outer. what do we pass in as the argument?

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function
- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

- try the last line! keep track of what n and m are



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

5

Reasoning

<func …>

4

6

5

- first we call outer. what do we pass in as the argument?

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function
- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

- try the last line! keep track of what n and m are



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

5

Reasoning

<func …>

4

6

5 4

- first we call outer. what do we pass in as the argument?

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function
- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

- try the last line! keep track of what n and m are



What will Python display? 
def outer(n): 

   def inner(m): 

      return n - m 

   return inner

>>> outer(61)

>>> f = outer(10) 
>>> f(4)

>>> outer(5)(4)

5

Reasoning

<func …>

4

6

5 4

1

- first we call outer. what do we pass in as the argument?

we pass in 61.

- now we are ready to execute the body of outer. the first thing we 
encounter is another function definition
- after defining inner, we encounter the line: return inner 
  is this a function call?

no, inner is not a function call. there are no parenthesis! 
another way to tell its not a function call is by noticing there 
are no arguments

- since inner is not a function call, we must be trying to return the value 
of the name inner. what is the value of inner?

we just defined inner as a function. so the value of the 
name inner is the function called inner

- therefore we return the function called inner. Python will display this 
as something gross, but we got the important fact: calling outer will 
return another function
- in the next line (f = outer(10)), we again call outer, which we 
know returns the function inner, but this time we bind the returned 
function to the name f 
- now we do the function call f(4). we know that f is really just inner, 
and we are passing in 4. what does m get bound to inside inner?

4

- what is n - m?
n is 10, m is 4. n - m = 10 - 4 = 6

- try the last line! keep track of what n and m are



3.2 #1



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

Reasoning



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning

while loop!



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning

while loop!

- since we want to iterate over all values 
from 1 to n, we need something to keep 
our place



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning

while loop!

- since we want to iterate over all values 
from 1 to n, we need something to keep 
our place
- we want to check if calling cond on each 
number from 1 to n returns true. so we 
need to do the following somewhere in our 
solution: cond(#)



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning

while loop!

- since we want to iterate over all values 
from 1 to n, we need something to keep 
our place
- we want to check if calling cond on each 
number from 1 to n returns true. so we 
need to do the following somewhere in our 
solution: cond(#)

- if cond(#) returns true, we want to 
print #



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning

while loop!

- since we want to iterate over all values 
from 1 to n, we need something to keep 
our place
- we want to check if calling cond on each 
number from 1 to n returns true. so we 
need to do the following somewhere in our 
solution: cond(#)

- if cond(#) returns true, we want to 
print #
use these facts to help you write a solution



Write a function that takes in a function cond and number n and prints the numbers 
from 1 to n for which calling cond on that number returns true.  
def keep_ints(cond, n):

k = 1 

while k <= n: 

   if cond(k): 

      print(k) 

   k += 1

- we need to do some action for every 
number from 1 to n. what python tool 
should we use?

Reasoning

while loop!

- since we want to iterate over all values 
from 1 to n, we need something to keep 
our place
- we want to check if calling cond on each 
number from 1 to n returns true. so we 
need to do the following somewhere in our 
solution: cond(#)

- if cond(#) returns true, we want to 
print #
use these facts to help you write a solution



3.4 #2



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

Reasoning



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?

the returned function does exactly 
what keep_ints used to do



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?

- instead of keep_ints doing the work, 
keep_ints will define a function that 
does that work for us

the returned function does exactly 
what keep_ints used to do



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?

- instead of keep_ints doing the work, 
keep_ints will define a function that 
does that work for us

use these facts to help you write a solution

the returned function does exactly 
what keep_ints used to do



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?

- instead of keep_ints doing the work, 
keep_ints will define a function that 
does that work for us

use these facts to help you write a solution

the returned function does exactly 
what keep_ints used to do

def do_work(cond):



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?

- instead of keep_ints doing the work, 
keep_ints will define a function that 
does that work for us

use these facts to help you write a solution

the returned function does exactly 
what keep_ints used to do

def do_work(cond):

return do_work



Write a function that takes in a function a number n and returns another function that 
takes in one parameter cond. The returned function prints the numbers from 1 to n 
for which calling cond on that number returns true.  
def keep_ints(n):

k = 1 

while k <= n: 

   if cond(k): 

      print(k) 

   k += 1

- this is very similar to what we just did!

Reasoning

- what does the returned function do? 
does this sound familiar?

- instead of keep_ints doing the work, 
keep_ints will define a function that 
does that work for us

use these facts to help you write a solution

the returned function does exactly 
what keep_ints used to do

def do_work(cond):

return do_work


