DISC 08

00P TERMINOLOGY

class Pet:
happy = True
def 1init (self, name):

self.name = name

class Puppy(Pet):

good boy = True

def bark(self):
1f Pet.happy:

print (“woof”)

def break lamp(self):
self.good boy = False
happy = False

00P TERMINOLOGY

class Pet:
happy = True
def 1init (self, name):

self.name = name

class Puppy(Pet):
good boy = True
def bark(self):
1f Pet.happy:
print (“woof”)
def break lamp(self):
self.good boy = False

happy = False class

00P TERMINOLOGY

class
class Pet:
happy = True class attributes
def 1init (self, name):
self.name = name

class Puppy(Pet):
good boy = True class attributes
def bark(self):
1f Pet.happy:
print (“woof”)
def break lamp(self):
self.good boy = False

happy = False class

00P TERMINOLOGY

class
class Pet:
happy = True class attributes
def 1init (self, name):
self.name = name instance attributes

class Puppy(Pet):
good boy = True class attributes
def bark(self):
1f Pet.happy:
print (“woof”)
def break lamp(self):
self.good boy = False

happy = False class

00P TERMINOLOGY

class
class Pet:
happy = True class attributes
def 1init (self, name):
self.name = name instance attributes

class Puppy(Pet):
good boy = True class attributes
def bark(self):
1f Pet.happy:
print (“woof”) methods
def break lamp(self):
self.good boy = False

happy = False class

00P TERMINOLOGY

brian = Puppy(“brain”)
marvin = Puppy(“marv”)
class Pet:

happy = True
def 1init (self, name):

self.name = name

class Puppy(Pet):

good boy = True

def bark(self):
1f Pet.happy:

print (“woof”)

def break lamp(self):
self.good boy = False
happy = False

00P TERMINOLOGY

class Pet:

happy = True

def 1init (self, name):

self.name = name

class Puppy(Pet):

good boy = True

def bark(self):
1f Pet.happy:

print (“woof”)

def break lamp(self):
self.good boy = False
happy = False

brian =
marvin =

Puppy(“brain”)
Puppy(“marv”)

00P TERMINOLOGY

brian = Puppy(“brain”)

marvin = Puppy(“marv”)
class Pet:
happy = True
def 1init (self, name): _
brian
self.name = name

class PuppY(Pet)=¢///m’ﬁfﬂ;;;;;;/’ ’

good bOY = True check parent for __init__
def bark(self):
1f Pet.happy:

print (“woof”)
def break lamp(self):
self.good boy = False
happy = False

00P TERMINOLOGY

brian = Puppy(“brain”)

marvin = Puppy(“marv”)
class Pet:
happy = True
def 1init (self, name): _
brian
self.name = name
name: “brain”

class Puppy(Pet):*,///”/////////’

good boy = True
def bark(self):
1f Pet.happy:

print (“woof”)
def break lamp(self):
self.good boy = False
happy = False

00P TERMINOLOGY

brian = Puppy(“brain”)

marvin = Puppy(“marv”)
class Pet:
happy = True
def 1init (self, name): _
brian
self.name = name
name: “brain”

class Puppy(Pet):*,,//”/////////’

good boy = True
def bark(self):
1f Pet.happy:

print (“woof”)
def break lamp(self):
self.good boy = False

happy = False

00P TERMINOLOGY

brian = Puppy(“brain”)

marvin = Puppy(“marv”)
class Pet:
happy = True
def 1init (self, name): _
brian
self.name = name
name: “brain”

class Puppy(Pet)=¢///R’ET;;;;;;;/’

good bOy = True check parent for __init__
def bark(self):
1f Pet.happy:

print (“woof”)
def break lamp(self):
self.good boy = False

happy = False

00P TERMINOLOGY

brian = Puppy(“brain”)

marvin = Puppy(“marv”)
class Pet:
happy = True
def 1init (self, name): _
brian
self.name = name
name: “brain”

class Puppy(Pet):*,,//”/////////’

good boy = True
def bark(self):
1f Pet.happy:

print (“woof”)
def break lamp(self):
self.good boy = False

name: ‘marv’

happy = False

00P TERMINOLOGY

brian = Puppy(“brain”)

marvin = Puppy(“marv”)
class Pet:
happy = True objects
def 1init (self, name):
self.name = name

name: “brain”

class Puppy(Pet):/ | | .!

good boy = True
def bark(self):
1f Pet.happy:

marvin
print (“woof”) , |

def break lamp(self): ;ﬁ?F > name: “marv’
self.good boy = False Ny

happy = False

HOW TO KEEP TRACK OF CLASSES AND OBJECTS

» Creating classes:

» Go through the class definitions and write class names on
the LHS

» Write class attributes under the corresponding name

» Write class methods under the corresponding name
» Creating objects:

» Write name of object on the RHS

» Go tothe init of the object’s class and write the

object’s instance attributes under the object name on the
RHS

1. Create classes

Writing the class attributes and methods under each class on the left
1 1 will help remind you which method to execute when you call a method

class Instructor:
degree = "PhD (Basketball)" # this is a class attribute
def init (self, name):
self.name = name # this is an instance attribute

def lecture(self, topic):

print("Today we're learning about + topic)
lebron = Instructor("Professor LeBron")
class Student:

instructor = lebron

def init (self, name, ta):
self.name = name
self.understanding = 0
ta.add student(self)

def attend lecture(self, topic):
Student.instructor.lecture(topic)
print (Student.instructor.name + "
self.understanding += 1

is awesome!")

def visit office hours(self, staff):
staff.assist(self)

print("Thanks, " + staff.name)

class TeachingAssistant:
def init (self, name):
self.name = name
self.students = {}

def add student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

Writing the class attributes and methods under each class on the left
1 1 will help remind you which method to execute when you call a method

1. Create classes

Instructor
degree: “PhD (Baskethall)”

Init

lecture

class Instructor:
degree = "PhD (Basketball)" # this is a class attribute
def _ init (self, name):
self.name = name # this is an instance attribute

def lecture(self, topic):

print("Today we're learning about + topic)
lebron = Instructor("Professor LeBron")
class Student:

instructor = lebron

def init (self, name, ta):
self.name = name
self.understanding = 0
ta.add student(self)

def attend lecture(self, topic):
Student.instructor.lecture(topic)
print (Student.instructor.name + "
self.understanding += 1

is awesome!")

def visit office hours(self, staff):
staff.assist(self)

print("Thanks, " + staff.name)

class TeachingAssistant:
def init (self, name):
self.name = name
self.students = {}

def add student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

1. Create classes

Writing the class attributes and methods under each class on the left
1 1 will help remind you which method to execute when you call a method

class Instructor:

I t t degree = "PhD (Basketball)" # this is a class attribute
ns ruc or def init (self, name):

degrEE: “PhD (Baskethall)” self.name = name # this is an instance attribute

. = def lecture(self, topic):
I|1It print("Today we're learning about

+ topic)

lECture lebron = Instructor("Professor LeBron")
class Student:
instructor = lebron

def init (self, name, ta):

Student self.name = name
self.understanding = 0
instructor ta.add student(self)
. . def attend lecture(self, topic):
Il]lt Student.instructor.lecture(topic)
print (Student.instructor.name + "

attend lECture self.understanding += 1

= " def visit office hours(self, staff):
VISIt_Oﬁlce_hourS staff.assist(self)

print("Thanks, "

is awesome!")

+ staff.name)

class TeachingAssistant:
def init (self, name):
self.name = name
self.students = {}

def add student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

1. Create classes
1 1 Writing the class attributes and methods under each class on the left

will help remind you which method to execute when you call a method

Instructor
degree: “PhD (Baskethall)”

Init

lecture

Student
Instructor:
Init
attend_lecture
visit_office_hours

TeachingAssistant
Init
add_student
assist

class Instructor:
degree = "PhD (Basketball)" # this is a class attribute
def _ init (self, name):
self.name = name # this is an instance attribute

def lecture(self, topic):
print("Today we're learning about " + topic)

lebron = Instructor("Professor LeBron")
class Student:
instructor = lebron

def init (self, name, ta):
self.name = name
self.understanding = 0
ta.add student(self)

def attend lecture(self, topic):
Student.instructor.lecture(topic)
print (Student.instructor.name + " is awesome!")
self.understanding += 1

def visit office hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class TeachingAssistant:
def init (self, name):
self.name = name
self.students = {}

def add student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

Instructor
degree: “PhD (Basketball)”

init

lecture

Student
Instructor: lebron
Init
attend_lecture
visit_office_hours

TeachingAssistant
Init
add_student
assist

1. Create classes | |
We missed something!

class Instructor:
degree = "PhD (Basketball)" # this is a class attribute
def init (self, name):
self.name = name # this is an instance attribute

def lecture(self, topic):
print("Today we're learning about " + topic)

lebron = Instructor("Professor LeBron")
class Student:
instructor = lebron

def init (self, name, ta):
self.name = name
self.understanding = 0
ta.add student(self)

def attend lecture(self, topic):
Student.instructor.lecture(topic)
print (Student.instructor.name + " is awesome!")
self.understanding += 1

def visit office hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class TeachingAssistant:
def init (self, name):
self.name = name
self.students = {}

def add student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

R 1. Create classes
1 1 The current line will be displayed up here

>>> lebron = Instructor(“Professor LeBron”) 2 create ObJECts

Instructor
degree: “PhD (Baskethall)”

Init

lecture

Student
Instructor: lebron
Init
attend_lecture
visit_office_hours

TeachingAssistant
Init
add_student
assist

AR 1. Create classes
1 1 The current line will be displayed up here

>>> lebron = Instructor(“Professor LeBron”) 2 create ObJECts

Instructor
degree: “PhD (Baskethall)
lebron

Init
name: “Professor LeBron”

lecture
we call __init__ from Instructor,
Stm.lent passing in “Professor LeBron™ as
Instructor: lebron name
init

attend lecture
visit office hours

TeachingAssistant
Init
add_student
assist

AR 1. Create classes
1 1 The current line will be displayed up here

>>> lebron = Instructor(“Professor LeBron”) 2 create Ob]ects

................. Claga P g e
Instructor
degree: “PhD (Baskethall)
init lebron
lecture name: “Professor LeBron”
wecall int from Instructor,
Stm.lent passing in “Professor LeBron™ as
Instructor:ebren gy e Student name
init class, we set

instructor to
attend_lecture lebron

visit office hours

TeachingAssistant
Init
add_student
assist

NOW THAT WE SET UP OUR
CLASSES AND OBJECTS, WE
CAN START EXECUTING THE

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> steph = TeachingAssistant(“Steph”) 2 create Oh]eCts

................. R T & ¢ AR
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
Init
lecture steph
name: “Steph”
Student students: {}
Instructor:
init Gointo _ init _ inthe
attend lecture TeachingAssistant class.
visit_office hours We set self.name to name and create
a dictionary of students which is
_ _ empty at first
TeachingAssistant
Init

add student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

»>> kyrie = Student("Kyrie”, steph) 2. Create objects
................. Claiiga 7o T g
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
Init
lecture steph

name: “Steph”

students: {"Kyrie”; » }
kyrie

name: “Kyrie”
understanding = 0

Student

Instructor:
Init
attend_lecture

visit_office_hours

Gointo __init__inthe Student class.
We set self.name to name and understanding to 0.

TeaChingASSiStant We also update our TAs dictionary by calling
Init ta.add_student(self
add student ta is steph (that is the second argumentto __init__) so we

) go into the add_student method of TeachingAssistant with
assist kyrie as student. Note that inside add_student, self is steph

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“defense”) 2 Create ObjECtS
................. Claiiga ™ 7o T g
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init steph
lecture

name: “Steph”

students: {"Kyrie” : » }
Student «— /
e —kyrie

Instructor:
Init name: “Kyrie”
attend_lecture understanding = 0

visit office hours

The first line in attend_lecture is:

Student.instructor.lecture(topic)

TeachingAssistant
Init
add_student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“defense”) 2 Create ObjECtS
................. Claiiga ™ 7o T g
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init steph
lecture

name: “Steph”

students: {"Kyrie” : » }
Student «— /
e —kyrie

Instructor:
Init name: “Kyrie”
attend_lecture understanding = 0

visit office hours

The first line in attend_lecture is:

Student.instructor.lecture(topic)

Teachin gASSiSta nt 1. Go to the Student class and find the class attribute instructor
init
add_ student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“defense”) 2 Create ObjECtS

................. R T T & ¢ A
Instructor < lebron

degree: “PhD (Baskethall)” name: “Professor LeBron™

| tinit steph

Felre name: “Steph”

students: {"Kyrie™ : =}

Student « /

instructor: —kyrie

init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The first line in attend_lecture is:

Student.instructor.lecture(topic)

Tea(:h | n g ASS|Sta nt 1. Go to the Student class and find the class attribute instructor

.o lebron.lecture(topic
init (ropie)

add student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“defense”) 2 Create ObjECtS

................. R T T & ¢ A
Instructor < lebron

degree: “PhD (Baskethall)” name: “Professor LeBron™

l tinit steph

— name: “Steph”

students: {"Kyrie™ : =}

Student « /

instructor: —kyrie

init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The first line in attend_lecture is:

Student.instructor.lecture(topic)

Tea(:h | n g ASS|Sta nt 1. Go to the Student class and find the class attribute instructor
- lebron.lecture(topic
Init tropre)
2. Call the method lecture and pass in topic (“defense”) as the argument
add_ student

assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Oh]ects

“Today we're learning about defense”

Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
l tinit steph
s name: “Steph”
students: {"Kyrie” : » }
Student « | /
instructor: —kyrie
init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The first line in attend_lecture is:

Student.instructor.lecture(topic)

Tea(:h | n g ASS|Sta nt 1. Go to the Student class and find the class attribute instructor
- lebron.lecture(topic
Init tropre)
2. Call the method lecture and pass in topic (“defense”) as the argument
add_ student

This results in printing “Today we're learning about defense”

assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create ObjECtS

Today we're learning about defense

................. Clasiisa ™ T g
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init steph
lecture

name: “Steph”

students: {"Kyrie” : » }
Student «— /
e —kyrie

Instructor:
Init name: “Kyrie”
attend_lecture understanding = 0

visit office hours

The second line in attend_lecture is:

print (Student.instructor.name + *“

TeachingAssistant
Init
add_student
assist

is awesome!”)

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Ob]ects

Today we're learning about defense

................. R T & ¢ AR
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init steph
ecture name: “Steph”
students: {"Kyrie” : » }
Student « | /
instructor: —kyrie
init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The second line in attend_lecture is:

print (Student.instructor.name + “ is awesome!”)

TeachingAssistant 1. o t the Student class and find the class attribute instructor
init
add_student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Ob]ects

Today we're learning about defense

Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
| tinit steph
Felre name: “Steph”
students: {"Kyrie” : » }
Student « /
instructor: —kyrie
init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The second line in attend_lecture is:

print (Student.instructor.name + “ is awesome!”)

TeaCh I n gASSISta nt 1. Go to the Student class and find the class attribute instructor

|n|t print(lebron.name + “ is awesome!”)

add student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Ob]ects

Today we're learning about defense

Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
| tinit steph
Felre name: “Steph”
students: {"Kyrie” : » }
Student « /
instructor: —kyrie
init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The second line in attend_lecture is:

print (Student.instructor.name + “ is awesome!”)

TeaCh I n gASSISta nt 1. Go to the Student class and find the class attribute instructor
"“t print(lebron.name + “ is awesome!"”)
2. lebron has the instance attribute name, and its value is “Professor LebBron™
add_student

assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Oh]ects

Today we're learning about defense
Professor LeBron is awesome!

Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
| tinit steph
Felre name: “Steph”
students: {"Kyrie” : » }
Student « | /
instructor: —kyrie
init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The second line in attend_lecture is:

print (Student.instructor.name + “ is awesome!”)

TeaCh I n gASSISta nt 1. Go to the Student class and find the class attribute instructor
""t print(lebron.name + “ is awesome!"”)
2. lebron has the instance attribute name, and its value is “Professor LebBron™
add_student

print (“Professor LeBron” + “ is awesome!”)

assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Ob]ects

Today we're learning about defense
Professor LeBron is awesome!

................. LB e e
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init steph
lecture

name: “Steph”

students: {"Kyrie” : » }
Student «— /
e —kyrie

Instructor:
Init name: “Kyrie”
attend_lecture understanding = 0

visit office hours

The third line in attend_lecture is:

self.understanding += 1

TeachingAssistant
Init
add_student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Ob]ects

Today we're learning about defense
Professor LeBron is awesome!

Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
| tinit steph
Felre name: “Steph”
students: {"Kyrie” : » }
Student « /
instructor: <~ —kyrie
init name: “Kyrie”
aﬂend_[ecture underStanding =0

visit office hours

The third line in attend_lecture is:

self.understanding += 1

TeachingAssistant | e i et st v psd b v et efne
Init
add student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.attend lecture(“”defense”) 2 Create Ob]ects

Today we're learning about defense
Professor LeBron is awesome!

Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
| tinit steph
Felre name: “Steph”
students: {"Kyrie” : » }
Student « /
instructor: <~ —kyrie
init name: “Kyrie”
attend_lecture understanding =8’, |

visit office hours

The third line in attend_lecture is:

self.understanding += 1

Tea Ch I n gASSISta nt 1. selfis kyrie because that is the object we passed in when we did kyrie.attend_lecture(“defense”)
Init
2. increment kyrie’s understanding by 1
add_student

assist

Now we are ready to walk through the lines on page 3 1. Create classes

The current line will be displayed up here
1 1 >>> melo.attend lecture(“championships!”) 2 create Ob]ects

................. Claiiga ™ 7o T g
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init steph
lecture

name: “Steph”

students: {"Kyrie” ; »,
Student /armelo" o}
Instructor: _
kyrie

init _
name: “Kyrie”

attend_lecture _
visit office_hc understanding =4, 1
melo
TeachingAssistant name: “Carmelo”
init understanding = 0

add student
assist

Now we are ready to walk through the lines on page 3 1. Create classes

The current line will be displayed up here
1 1 >>> melo.attend lecture(“championships!”) 2 create Ob]ects

Today we're learning about championships
Professor LeBron is awesome!

................. R 1 o L MR
Instructor < lebron
degree: “PhD (Baskethall)” name: “Professor LeBron™
init
lecture steph
name: “Steph”
students: {"Kyrie" ; »,
Stm_lent “Carmelo”
Instructor: _
init kyrie .=~
attend_lecture name: “Kyrie
visit office_h understandiiig =4, 1
melo
TeachingAssistant name: “Carmelo”
init understanding =4’ 1
add_student Repeat almost the same steps from when we called
assist kyrie.attend_lecture(‘'defense’) but this time update melo’s

understanding

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> melo.visit office hours . 2 Create Ob]e(:ts

(TeachingAssistant (“Dwayn

................. Claggas " 7 T g e
Instructor < lebron S
degree: “PhD (Baskethall)” rae: TIOTESSOr TR
. steph
Init name: “Steph”
lecture students: {*Kyrie” ; o,
/C‘armelo”- }
kyrie
Student « name: “Kyrie”

Instructor: underst

init melo
name: “Carmelo”
attend_lecture understanding =4’ 1

visit office hours

TeachingAssistant
Init
add_student
assist

in visit_office_hours, self is melo and staff is 7??

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> melo.visit office hours . 2 Create Ob]e(:ts

(TeachingAssistant (“Dwayn

................. Claggas " 7 T g e
Instructor < lebron S
degree: “PhD (Baskethall)” rae: TIOTESSOr TR
. steph
Init name: “Steph”
lecture students: {*Kyrie” ; o,
/C‘armelo”- }
kyrie
Student « name: “Kyrie”

Instructor: underst

init melo

name: “Carmelo”
attend_lecture understanding =4’ 1
visit_office_hours 279

name: “Dwayne”
students: {}

TeachingAssistant
Init
add_student
assist

in visit_office_hours, self is melo and staff is 7??

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> melo.visit office hours "
(Eeachin;Assistant(”Dwayne”)) 2 create ObJECts
................. Clagsae """ 7 T e
Instructor < lebron s Lo
» " name: “Professor LeBron
degree: “PhD (Baskethall) —
.. step
Init name: “Steph”
lecture students: {'Kyrie” . »,
/C‘armelo”- }
kyrie
Student <« name: “Kyrie”
instructor: understgnding =47 1
Init melo
d name: “Carmelo”
attend_lecture understanding =l 1
visit_office_hours 2

name: “Dwayne”
students: {}

TeachingAssistant
Init
add_student
assist

in visit_office_hours, self is melo and staff is 7??

then we call staff.assist(self)

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> melo.visit office hours . 2 Create Oh]e(:ts

(TeachingAssistant (“Dwayn

................. Clagsas " "7 T T e
Instructor < lebron s Lo
degree: “PhD (Basketball)” —
. . step
Init name: “Steph”
lecture students: {'Kyrie” . »,
/C‘armelo”- }
kyrie
Student <« name: “Kyrie”
Instructor: understanding =,
Init melo
name: “Carmelo”
attend_lecture understanding =l Py
visit_office_hours 7
name: “Dwayne”
students: {}
TeaCh"?gQSSIStant in visit_office_hours, self is melo and staff is ?7?
Ini

then we call staff.assist(self)

add student

_ in assist, we increment melo’s understanding by 1
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> melo.visit office hours "

) Thank Dwﬂy(l]EﬁeachinaAssistant(“Dwayne”)) 2 create OhJECtS
............. Elasses[]BJECTS
Instructor < oo Lefrr

degree: “PhD (Baskethall) —
.. step
Init name: “Steph”
lecture students: {"Kyrie" . »,
/armelo" 9}
kyrie
Student <« name: “Kyrie”

Instructor: underst

init melo
d name: “Carmelo”
attend_lecture understanding <4 7, 2
visit_office hours 279
name: “Dwayne”
students: {}
TeaCh"?gfi‘SSIStant In visit_office_hours, self is melo and staff is 7??
ini

then we call staff.assist(self)

add_—StUdent In assist, we increment melo’s understanding by 1
assist hack in visit_office_hours we have a print statement

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> kyrie.understanding 2 create Ob]ects
................. Clagsae " "7 T T e
Instructor < oo Lefrr
degree: “PhD (Baskethall) e T
. steph
Init name: “Steph”
lecture students: {"Kyrie" . »,
/C‘armelo”- }
Kyrie /
Student name: “Kyrie”
instructor: understanding =£”, 1
init melo‘/
name: “Carmelo”
attend_lecture understanding <4’ 7, 2
visit_office_hours 77
name: “Dwayne”
/ students: {}
TeachingAssistant
Init

add student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> 1kyrie.understanding 2 create Ob]ects
................. Clagsae " 7 7 T e
Instructor < lebron s Lo
degree: “PhD (Baskethall) e T
. steph
Init name: “Steph”
lecture students: {'Kyrie” . »,
/C‘armelo”- }
kyrie /
Student name: “Kyrie”

instructor: understanding =£”, 1
init melo‘/

d name: “Carmelo”
attend_lecture understanding <4’ 7, 2
visit_office hours 279

name: “Dwayne”
students: {}
TeachingAssistant
Init

add student
assist

Now we are ready to walk through the linesonpage3 1 Create classes
The current line will be displayed up here
1 .1 >>> steph.students[“Carmelo”].understanding 2 create Ob]ects

Instructor ebron e
degree: “PhD (Baskethall)” name: “Professor LeBron
init steph

name: “Steph”

lecture students: {*Kyrie” ; o,
/C‘armelo” .0}

o
Student «— "

name: “Kyrie”
Instructor: underst
int

attend lecture
visit office hours

melo
name: “Carmelo”

understanding =l / 2
44

name: “Dwayne”
students: {}

TeaChmgASSISta nt When we have a sequence of words and periods, read from left to right.
mlt 1. Find steph
2. steph should have an instance attribute called students
3. students is a dictionary. Look for the key “Carmelo”
add—StUdent h. the value of the key “Carmelo” points at the object melo
aSSi St 9. melo has instance attribute understanding, which is what is

displayed

Now we are ready to walk through the linesonpage3 1 Create classes
The current line will be displayed up here
1 .1 >>> steph.students[“Carmelo”].understanding 2 create Oh]ects

Instructor < ebron e
degree: “PhD (Baskethall)” name: “Professor LeBron
init steph

name: “Steph”

lecture students: {*Kyrie” ; o,
/C‘armelo” .0}

o
Student «— "

name: “Kyrie”
Instructor: underst
int

attend lecture
visit office hours

melo
name: “Carmelo”

understanding =l / 2
44

name: “Dwayne”
students: {}

TeaChmgASSISta nt When we have a sequence of words and periods, read from left to right.
|n|t 1. Find steph
2. steph should have an instance attribute called students
3. students is a dictionary. Look for the key “Carmelo”
add—StUdent h. the value of the key “Carmelo” points at the object melo
aSSi St 9. melo has instance attribute understanding, which is what is

displayed

Now we are ready to walk through the linesonpage3 1 Create classes
The current line will be displayed up here
1 .1 >>> steph.students[“Carmelo”].understanding 2 create Oh]ects

Instructor < ebron e
degree: “PhD (Basketha[[)” name: “Professor LeBron
Ini steph
i name: “Steph”
lecture students: {"Kyrie” : o,

“Carmelo” ;»}
/

kyrie
Student +— name: “Kyrie”
Instructor: understanding =,

melo
name: “Carmelo”

understanding =l / 2
44

name: “Dwayne”
students: {}

Init
attend lecture
visit office hours

TeaChmgASSISta nt When we have a sequence of words and periods, read from left to right.
|n|t 1. Find steph
2. steph should have an instance attribute called students
3. students is a dictionary. Look for the key “Carmelo”
add—StUdent h. the value of the key “Carmelo” points at the object melo
aSSi St 9. melo has instance attribute understanding, which is what is

displayed

Now we are ready to walk through the linesonpage3 1 Create classes
The current line will be displayed up here
1 .1 >>> steph.students[“Carmelo”].understanding 2 create Oh]ects

Instructor < ebron e
degree: “PhD (Basketha[[)” name: “Professor LeBron
Ini steph
i name: “Steph”
lecture students: {"Kyrie” : o,

“Carmelo” ;»}
/

kyrie
Student « name: “Kyrie”
Instructor: understanding =,
Init melo

name: “Carmelo”
understanding <4’ &7, 2
44

name: “Dwayne”
students: {}

attend lecture
visit office hours

TeaChmgASSISta nt When we have a sequence of words and periods, read from left to right.
|n|t 1. Find steph
2. steph should have an instance attribute called students
3. students is a dictionary. Look for the key “Carmelo”
add—StUdent h. the value of the key “Carmelo” points at the object melo
aSSi St 9. melo has instance attribute understanding, which is what is

displayed

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> steph.students[“Carmelo”].understanding 2 Create Oh

jects

Instructor < ebron e
degree: “PhD (Basketha[[)” name: “Professor LeBron
Ini steph
i name: “Steph”
lecture students: {"Kyrie” : o,

“Carmelo” ;»}
/

kyrie
Student +— name: “Kyrie”
Instructor: understanding =,

melo
name: “Carmelo”

understanding <4’ &7, 2
44

name: “Dwayne”
students: {}

Init
attend lecture
visit office hours

TeaChmgASSISta nt When we have a sequence of words and periods, read from left to right.
|n|t 1. Find steph
2. steph should have an instance attribute called students
3. students is a dictionary. Look for the key “Carmelo”
add—StUdent h. the value of the key “Carmelo” points at the object melo
aSSi St 9. melo has instance attribute understanding, which is what is

displayed

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> Student.instructor = 2 create Ob]ects

Instructor (“Professor Kobe”)

................. Claggas " 7 T g e
Instructor < lebron S
degree: “PhD (Baskethall)” rae: TIOTESSOr TR
. steph
Init name: “Steph”
lecture students: {*Kyrie” ; o,
/C‘armelo”- }
kyrie
Student « name: “Kyrie”

Instructor: underst

init melo

name: “Carmelo”
attend_lecture understanding <4’ 7, 2
visit_office_hours 279

name: “Dwayne”
students: {}

TeachingAssistant
Init
add_student
assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> Student.instructor = 2 create Ob]ects

Instructor (“Professor Kobe”)

degree: ”
Init
lecture

D (Baskethall)”

Student <
Instructor:
Init
attend_lecture
visit_office_hours

TeachingAssistant
Init
add_student
assist

lebron
name: “Professor LeBron™

steph
name: “Steph”

students: {*Kyrie” ; o,
/Earmelo" .0}

kyrie
name: “Kyrie”
underst

melo
name: “Carmelo”

understanding =[/ 2
m

name: “Dwayne”

students: {}

M
name: “Professor Kobe”
students: {}

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

>>> Student.instructor = 2 create Ob]ects

Instructor (“Professor Kobe”)

................. Clagsae """ 7 T e
Instructor lebron S
A ” name: “Professor LeBron
deg_rge: D (Baskethall) -
Init name: “Steph”
lecture students: {"Kyrie” ; »,
/C‘armelo”- }
kyrie
Student < name: “Kyrie”
instructor: understanding =4
Init X melo
name: “Carmelo”
attend_lecture understanding =l / 2
visit_office_hours "
name: “Dwayne”
students: {}
TeachingAssistant e
Init name: “Professor Kobe”
add_student students:

assist

Now we are ready to walk through the lines on page 3 1. Create classes
1 1 The current line will be displayed up here

> St i e LS, e - LTEGEE OBjeCtS
................. Rt |11 | [SRR
Instructor < lebron s Lo
name: “Professor LeBron
degree: “PhD (Baskethall)”
g. . () steph
Init name: “Steph”
lecture students: {'Kyrie” . »,
/C‘armelo”- }
kyrie
Student < name: “Kyrie”
instructor: understgnding =47 1
Init X melo
name: “Carmelo”
attend—ledure understanding =l / f 3
visit_office_hours 7
name: “Dwayne”
students: {}
TeachingAssistant 9
Init name: “Professor Kobe”
add_student students: §

assist

class A:
def f(self):
return 2
def g(self, obj, x):
1f x ==
return A.f(obj)
return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4

1. Create classes
2.1 43 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4 B(A) — y

>>> x.f()

1. Create classes
2.1 #3 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4 B(A) — Y

>>> x.£()

1. check what type of object x is

1. Create classes
2.1 #3 2. Create objects

class A: Classes OBJECTS

def f(self):
return 2 A: « X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g
return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4 B(A) — Y

>>> x.£()

1. check what type of object x is
X points to A in our diagram

1. Create classes

2.1 #3 2. Create objects
g — Clas:.es 0BJECTS
defrZ?zZTf? obj, x): .f X
if x == 0:

return A.f(obj)
return obj.f() + self.g(self, x = 1) g
class B(A):
def f(self):
return 4 B(A) — Y

>>> x.£()

1. check what type of object x is
X points to A in our diagram

2. execute the method f in the class A,
passing in x as self

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
S A g—
defr:(self? obj, x): f :
if x == 0:

return A.f(obj) g
return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4 B(A) — Y

>>> x.£()

1. check what type of object x is
X points to A in our diagram

2. execute the method f in the class A,
passing in x as self

return 2

1. Create classes
2.1 43 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4 B(A) — y

>>> x.f()

2

1. Create classes
2.1 43 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):
return 4 B(A) — y

>>> x.f()

2

>>> B.f()

1. Create classes
2.1 #3 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):

return 4 B(A) - y
f
>>> x.f()
2
>>> B.f()

1.Bisa clasi — we need an object to
pass In as self

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
def f(self):
return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x = 1)
class B(A):
def f(self):

return 4 B(A) — y
f
>>> x.f()
2
>>> B.f()

1.Bisa clasi — we need an object to
pass In as self

since we didn’t pass anything
In as self, this code will'error

1. Create classes
2.1 43 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x - 1)
class B(A):
def f(self):

return 4 B(A) ‘ y
f
>>> x.f()
2
>>> B.f()

Error

1. Create classes
2.1 43 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x - 1)
class B(A):
def f(self):

return 4 B(A) ‘ y
f
>>> x.f()
2
>>> B.f()
Error

>>> x.g(x, 1)

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
def f(self):
return 2 A: «— X
def g(self, obj, x): f
if x == 0:
return A.f(obj) g

return obj.f() + self.g(self, x - 1)
class B(A):
def f(self):

return 4 B(A) y
1. what dogs thjs cod in english
- 1 A f
:» x-1() what are we passing in as argumen S
>>> B.f()

>>> x.g(x, 1)

1. Create classes

2.1 43 2. Create objects
class A: Classes ~ OBJECTS
def f(self): A
return 2 :
def.g(-,o-, B: f<— X
l ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what dogs thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %aﬁrng? f
20 what are WF ||Jas Ing in as.arqurpents.
2 selfIs x betause its In front of the dot _ . _ .
s BE() we are calling the method g in the class A since x is an object whose type is A

g takes in 2 arguments: objis x and x is 1

Error

>>> Bo@ B

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
def f(self): A
return 2 :
cet o(hlg, B, - A
' ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what dogs thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %aﬁrng? f
20 what are WF ||Jas Ing In as.arqurpents.
2 self1s x betause its Tn tront of the dot _ _ _ _
s BE() we are calling the method g in the class A since x is an object whose type is A
' g takes in 2 arguments: objis x and x is 1
Error

>> Bo@ B 2. now we are ready to execute code! is x == 0 true?

1. Create classes

2.1 #3 2. Create objects
class A: Classes ~ OBJECTS
def f(self): A
return 2 :
cet o(eld, (. B A
' ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what does thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %aﬁrng? f
0 what are WF ||Jas Ing in as.arqurpents.
2 self1s x betause its Tn tront of the dot _ _ _ _
s BE() we are calling the method g in the class A since x is an object whose type is A

g takes in 2 arguments: objis x and x is 1

Error

>> Bo@ B 2. now we are ready to execute code! is x == 0 true?
x1s 1, so we need to execute the second return statement.

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
e (self): A
return 2 .
cet o(eld, (. B A
' ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what does thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %aﬁrng? f
x-20) what are WF ||Jas Ing in as.arqurpents.
2 self1s x betause its Tn tront of the dot _ _ _ _
s BE() we are calling the method g in the class A since x is an object whose type is A

g takes in 2 arguments: objis x and x is 1

Error

>> Bo@ B 2. now we are ready to execute code! is x == 0 true?
x1s 1, so we need to execute the second return statement.

J. what does obj.f() return?

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
e (self): A
return 2 :
cet o(elk, B,) A
' ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what dogs thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %aﬁrng? f
20 what are WF ||Jas Ing In as.arqurpents.
2 self1s x betause its Tn tront of the dot _ _ _ _
s BE() we are calling the method g in the class A since x is an object whose type is A
' g takes in 2 arguments: objis x and x is 1
Error
>>Bo@ B 2. now we are ready to execute code! is x == 0 true?

x1s 1, so we need to execute the second return statement.

J. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

1. Create classes

2.1 #3 2. Create objects
class A: Classes OBJECTS
e (self): A
return 2 :
oot o(ielk, . - A
' ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what dogs thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %aﬁrng? f
20 what are WF ||Jas Ing In as.arqurpents.
2 self1s x betause its Tn tront of the dot _ _ _ _
s BE() we are calling the method g in the class A since x is an object whose type is A
' g takes in 2 arguments: objis x and x is 1
Error
>>Bo@ B 2. now we are ready to execute code! is x == 0 true?

x1s 1, so we need to execute the second return statement.

J. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

4. what does self.g(self, x -1) return?

1. Create classes

2. Create objects

class A: Classes OBJECTS
def f(self): A
return 2 :
cer o heak, B, - A
- ie;;rn.A.f(obj)
return obj.f() + self.g(self, x - 1) g
class B(A):
def f(self):
return 4 B(A) — y
1. what dogs thjs code mean in english?
e wnat s sell? wll1at me_thoﬁ are we %alc'lrn ? f
20 what are WF ||Jas Ing in as ar urpents.
2 selfIs x betause its In front of the dot _ . _ .
s BE() we are calling the method g in the class A since x is an object whose type is A
' g takes in 2 arguments: objis x and x is 1
Error
>> Bo@ B 2. now we are ready to execute code! is x == 0 true?

x1s 1, so we need to execute the second return statement.

J. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

4. what does self.g(self, x -1) return?

self is x! we are calling the method g in class A where self is x and x is now 0.

this will cause us to go into the first if statement. _ _ _

{lho_w WF neet% to execute A.f(obj) where obj is x. we are calling method f in class A where self is x.
Is returns 2.

1. Create classes

2.1 #3 2. Create objects
Grese nn Classes OBJECTS
return 2. A: —
def_g(!,O-, I): f X

return A.f(obj) g
return obj.f() + self.g(self, x - 1)
class B(A):
def f(self):

return 4 B(A) — y
1. what dogs this cod ' lish?
T P f
7z xt0 what are WF ||Jas Ing in as ar urPents.
2 self1s x betause its Tn tront of the dot _ _ _ _
s BE() we are calling the method g in the class A since x is an object whose type is A

g takes in 2 arguments: objis x and x is 1

Error

>> Bo@ B 2. now we are ready to execute code! is x == 0 true?
x1s 1, so we need to execute the second return statement.

J. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

4. what does self.g(self, x -1) return?

self is x! we are calling the method g in class A where self is x and x is now 0.

this will cause us to go into the first if statement. _ _ _

{lhO_W Wf nee% to execute A.f(obj) where obj is x. we are calling method f in class A where self is x.
is returns 2.

5. combine the results! what is the final return value?

1. Create classes

2.1 #3 2. Create objects
Grese nn Classes OBJECTS
return 2. A: —
def_g(!,O-, I): f X

return A.f(obj) g
return obj.f() + self.g(self, x - 1)
class B(A):
def f(self):

return 4 B(A) — y
1. what does this cod ' ish?
f wn"ét S self? wh%f&eﬁh“éﬁa§ré“v?3%2ﬁfn? f
>>> %10 what are WF ||Jas Ing in as.ar urPents.
2 self I1s x betause its Tn front of the dot

we are calling the method g in the class A since x is an object whose type is A
g takes in 2 arguments: objis x and x is 1

>>> B.f()

Error

>> Bo@ B 2. now we are ready to execute code! is x == 0 true?

4 x1s 1, so we need to execute the second return statement.

J. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

4. what does self.g(self, x -1) return?

self is x! we are calling the method g in class A where self is x and x is now 0.
this will cause us to go into the first if statement.

now we need to execute A.f(obj) where obj is x. we are calling method f in class A where self is x.
this returns 2.

5. combine the results! what is the final return value? 4

1. Create classes
2.1 43 2. Create objects

class A: Classes OBJECTS

def f(self):

return 2 A: «— X
def g . I):
return A.f(obj) g

return obj.f() + self.g(self, x - 1)
class B(A):
def f(self):

return 4 B(A) — y
1. what does this code mean in en?llisy? what is self? what method are we calling? f
what are we passing in as arguments?
self is y because its in front of the dot))))) _ o
>>> x.f() we are calling the method g in the class A since y is an object whose type is B but there is no method g in class B and class A inherits from class A
g takes in 2 arguments: obj is x and X is 2
2 2. now we are ready to execute code! is x == 0 true?
X is 2, so we need to execute the second return statement.
>>> B.f() 3. what does obj.f() return? _ o
obj is x! we are calling the method f in class A where self is x. this just returns 2
Error 4. what method are we call'mg when we execute the line self.g(self, x - 1)? what
arguments are we passing in?_ _ _ _ _ _ _
>>> x.g(x, 1) self is y! we are calling the method g in class B. But since class B does not have method g, we look at its parent. So we call g in class A where self is y and x is 1

5.is x == 0 true?
4

>>> y.g(I, I) 6.

We passed in 1 as x, so this statement is false.

