
DISC 08
OOP

OOP TERMINOLOGY

class Pet:
 happy = True
 def __init__(self, name):
 self.name = name

class Puppy(Pet):
 good_boy = True
 def bark(self):
 if Pet.happy:
 print(“woof”)
 def break_lamp(self):
 self.good_boy = False
 happy = False

class attributes

instance attributes

methods

class

class

class attributes

class Pet:
 happy = True
 def __init__(self, name):
 self.name = name

class Puppy(Pet):
 good_boy = True
 def bark(self):
 if Pet.happy:
 print(“woof”)
 def break_lamp(self):
 self.good_boy = False
 happy = False

OOP TERMINOLOGY

brian = Puppy(“brain”)
marvin = Puppy(“marv”)

brian

name: “brain”

marvin

name: “marv”

no __init__ method defined here
check parent for __init__
no __init__ method defined here
check parent for __init__

objects

HOW TO KEEP TRACK OF CLASSES AND OBJECTS

➤ Creating classes:

➤ Go through the class definitions and write class names on
the LHS

➤ Write class attributes under the corresponding name

➤ Write class methods under the corresponding name

➤ Creating objects:

➤ Write name of object on the RHS

➤ Go to the __init__ of the object’s class and write the
object’s instance attributes under the object name on the
RHS

1.1
class Instructor:
 degree = "PhD (Basketball)" # this is a class attribute
 def __init__(self, name):
 self.name = name # this is an instance attribute

 def lecture(self, topic):
 print("Today we're learning about " + topic)

lebron = Instructor("Professor LeBron")
class Student:
 instructor = lebron

 def __init__(self, name, ta):
 self.name = name
 self.understanding = 0
 ta.add_student(self)

 def attend_lecture(self, topic):
 Student.instructor.lecture(topic)
 print(Student.instructor.name + " is awesome!")
 self.understanding += 1

 def visit_office_hours(self, staff):
 staff.assist(self)
 print("Thanks, " + staff.name)

class TeachingAssistant:
 def __init__(self, name):
 self.name = name
 self.students = {}

 def add_student(self, student):
 self.students[student.name] = student

 def assist(self, student):
 student.understanding += 1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes
Writing the class attributes and methods under each class on the left
will help remind you which method to execute when you call a method

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor: lebron
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

class Instructor:
 degree = "PhD (Basketball)" # this is a class attribute
 def __init__(self, name):
 self.name = name # this is an instance attribute

 def lecture(self, topic):
 print("Today we're learning about " + topic)

lebron = Instructor("Professor LeBron")
class Student:
 instructor = lebron

 def __init__(self, name, ta):
 self.name = name
 self.understanding = 0
 ta.add_student(self)

 def attend_lecture(self, topic):
 Student.instructor.lecture(topic)
 print(Student.instructor.name + " is awesome!")
 self.understanding += 1

 def visit_office_hours(self, staff):
 staff.assist(self)
 print("Thanks, " + staff.name)

class TeachingAssistant:
 def __init__(self, name):
 self.name = name
 self.students = {}

 def add_student(self, student):
 self.students[student.name] = student

 def assist(self, student):
 student.understanding += 1

We missed something!

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor: lebron
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Inside the Student
class, we set
instructor to
lebron

we call __init__ from Instructor,
passing in “Professor LeBron” as
name

The current line will be displayed up here

>>> lebron = Instructor(“Professor LeBron”)

OBJECTSClasses

NOW THAT WE SET UP OUR
CLASSES AND OBJECTS, WE
CAN START EXECUTING THE

CODE

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> steph = TeachingAssistant(“Steph”)

steph
 name: “Steph”
 students: {}

Go into __init__ in the
TeachingAssistant class.
We set self.name to name and create
a dictionary of students which is
empty at first

OBJECTSClasses

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> kyrie = Student(“Kyrie”, steph)

steph
 name: “Steph”
 students: {“Kyrie”: }

kyrie
 name: “Kyrie”
 understanding = 0

Go into __init__ in the Student class.
We set self.name to name and understanding to 0.
We also update our TA’s dictionary by calling
ta.add_student(self)
ta is steph (that is the second argument to __init__) so we
go into the add_student method of TeachingAssistant with
kyrie as student. Note that inside add_student, self is steph

OBJECTSClasses

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> kyrie.attend_lecture(“defense”)

steph
 name: “Steph”
 students: {“Kyrie” : }

kyrie
 name: “Kyrie”
 understanding = 0

Student.instructor.lecture(topic)

The first line in attend_lecture is:

1. Go to the Student class and find the class attribute instructor

2. Call the method lecture and pass in topic (“defense”) as the argument

lebron.lecture(topic)

This results in printing “Today we’re learning about defense”

“Today we’re learning about defense”

OBJECTSClasses

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> kyrie.attend_lecture(“defense”)

kyrie
 name: “Kyrie”
 understanding = 0

print(Student.instructor.name + “ is awesome!”)

The second line in attend_lecture is:

1. Go to the Student class and find the class attribute instructor

2. lebron has the instance attribute name, and its value is “Professor LebBron”

print(lebron.name + “ is awesome!”)

Today we’re learning about defense

print(“Professor LeBron” + “ is awesome!”)

Professor LeBron is awesome!

steph
 name: “Steph”
 students: {“Kyrie” : }

OBJECTSClasses

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> kyrie.attend_lecture(“defense”)

kyrie
 name: “Kyrie”
 understanding = 0

self.understanding += 1

The third line in attend_lecture is:

1. self is kyrie because that is the object we passed in when we did kyrie.attend_lecture(“defense”)

2. increment kyrie’s understanding by 1

Today we’re learning about defense
Professor LeBron is awesome!

, 1

steph
 name: “Steph”
 students: {“Kyrie” : }

OBJECTSClasses

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> melo.attend_lecture(“championships!”)

kyrie
 name: “Kyrie”
 understanding = 0 , 1

steph
 name: “Steph”
 students: {“Kyrie” : ,
 “Carmelo” : }

melo
 name: “Carmelo”
 understanding = 0

Today we’re learning about championships
Professor LeBron is awesome!

, 1

Repeat almost the same steps from when we called
kyrie.attend_lecture(‘defense’) but this time update melo’s
understanding

OBJECTSClasses

melo
 name: “Carmelo”
 understanding = 0

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> melo.visit_office_hours
(TeachingAssistant(“Dwayne”))

kyrie
 name: “Kyrie”
 understanding = 0

, 1

steph
 name: “Steph”
 students: {“Kyrie” : ,
 “Carmelo” : }

, 1

???
 name: “Dwayne”
 students: {}

, 2

in visit_office_hours, self is melo and staff is ???

then we call staff.assist(self)

in assist, we increment melo’s understanding by 1
back in visit_office_hours we have a print statement

Thanks, Dwayne
OBJECTSClasses

melo
 name: “Carmelo”
 understanding = 0

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> kyrie.understanding

kyrie
 name: “Kyrie”
 understanding = 0

, 1

steph
 name: “Steph”
 students: {“Kyrie” : ,
 “Carmelo” : }

, 1

???
 name: “Dwayne”
 students: {}

, 2

1
OBJECTSClasses

melo
 name: “Carmelo”
 understanding = 0

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> steph.students[“Carmelo”].understanding

kyrie
 name: “Kyrie”
 understanding = 0

, 1

steph
 name: “Steph”
 students: {“Kyrie” : ,
 “Carmelo” : }

, 1

???
 name: “Dwayne”
 students: {}

, 2

2

When we have a sequence of words and periods, read from left to right.
1. Find steph
2. steph should have an instance attribute called students
3. students is a dictionary. Look for the key “Carmelo”
4. the value of the key “Carmelo” points at the object melo
5. melo has instance attribute understanding, which is what is

displayed

OBJECTSClasses

melo
 name: “Carmelo”
 understanding = 0

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> Student.instructor =
Instructor(“Professor Kobe”)

kyrie
 name: “Kyrie”
 understanding = 0

, 1

steph
 name: “Steph”
 students: {“Kyrie” : ,
 “Carmelo” : }

, 1

???
 name: “Dwayne”
 students: {}

, 2

????
 name: “Professor Kobe”
 students: {}

OBJECTSClasses

melo
 name: “Carmelo”
 understanding = 0

1.1

Instructor
 degree: “PhD (Basketball)”
 __init__
 lecture

Student
 instructor:
 __init__
 attend_lecture
 visit_office_hours

TeachingAssistant
 __init__
 add_student
 assist

1. Create classes

2. Create objects

lebron
 name: “Professor LeBron”

Now we are ready to walk through the lines on page 3
The current line will be displayed up here

>>> Student.attend_lecture(melo,
 “game winners”)

kyrie
 name: “Kyrie”
 understanding = 0

, 1

steph
 name: “Steph”
 students: {“Kyrie” : ,
 “Carmelo” : }

, 1

???
 name: “Dwayne”
 students: {}

, 2

????
 name: “Professor Kobe”
 students: {}

Today we’re learning about game winners
Professor Kobe is awesome!

, 3

OBJECTSClasses

2.1 #3

class A:
 def f(self):
 return 2
 def g(self, obj, x):
 if x == 0:
 return A.f(obj)
 return obj.f() + self.g(self, x = 1)
class B(A):
 def f(self):
 return 4

2.1 #3

A:
 f
 g

B(A)
 f

1. Create classes

x

y

2. Create objects

class A:
 def f(self):
 return 2
 def g(self, obj, x):
 if x == 0:
 return A.f(obj)
 return obj.f() + self.g(self, x = 1)
class B(A):
 def f(self):
 return 4

OBJECTSClasses

1. check what type of object x is
>>> x.f()

x points to A in our diagram
2. execute the method f in the class A,
passing in x as self

return 2

2.1 #3

A:
 f
 g

B(A)
 f

1. Create classes

x

y

2. Create objects

class A:
 def f(self):
 return 2
 def g(self, obj, x):
 if x == 0:
 return A.f(obj)
 return obj.f() + self.g(self, x = 1)
class B(A):
 def f(self):
 return 4

OBJECTSClasses

>>> x.f()

2

>>> B.f()

1. B is a class — we need an object to
pass in as self

since we didn’t pass anything
in as self, this code will error

2.1 #3

A:
 f
 g

B(A)
 f

1. Create classes

x

y

2. Create objects

class A:
 def f(self):
 return 2
 def g(self, obj, x):
 if x == 0:
 return A.f(obj)
 return obj.f() + self.g(self, x - 1)
class B(A):
 def f(self):
 return 4

OBJECTSClasses

>>> x.f()

2

>>> B.f()

Error

>>> x.g(x, 1)

1. what does this code mean in english?
what is self? what method are we calling?
what are we passing in as arguments?

self is x because its in front of the dot
we are calling the method g in the class A since x is an object whose type is A
g takes in 2 arguments: obj is x and x is 1

2. now we are ready to execute code! is x == 0 true?
x is 1, so we need to execute the second return statement.

3. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

4. what does self.g(self, x -1) return?
self is x! we are calling the method g in class A where self is x and x is now 0.
this will cause us to go into the first if statement.
now we need to execute A.f(obj) where obj is x. we are calling method f in class A where self is x.
this returns 2.

5. combine the results! what is the final return value? 4

4

2.1 #3

A:
 f
 g

B(A)
 f

1. Create classes

x

y

2. Create objects

class A:
 def f(self):
 return 2
 def g(self, obj, x):
 if x == 0:
 return A.f(obj)
 return obj.f() + self.g(self, x - 1)
class B(A):
 def f(self):
 return 4

OBJECTSClasses

>>> x.f()

2

>>> B.f()

Error

>>> x.g(x, 1)

4

>>> y.g(x, 2)

1. what does this code mean in english? what is self? what method are we calling?
what are we passing in as arguments?

self is y because its in front of the dot
we are calling the method g in the class A since y is an object whose type is B but there is no method g in class B and class A inherits from class A
g takes in 2 arguments: obj is x and x is 2

2. now we are ready to execute code! is x == 0 true?
x is 2, so we need to execute the second return statement.

3. what does obj.f() return?
obj is x! we are calling the method f in class A where self is x. this just returns 2

4. what method are we calling when we execute the line self.g(self, x - 1)? what
arguments are we passing in?

self is y! we are calling the method g in class B. But since class B does not have method g, we look at its parent. So we call g in class A where self is y and x is 1

5. is x == 0 true?

We passed in 1 as x, so this statement is false.

6.

