
Disc 04
Orders of Growth
Data Abstraction



Orders of Growth Tips
Carefully examine the provided functions. Try running 
through them with different kinds of input.

Ask yourself: how many iterations will this function go 
through based on the size of the input?

For recursion it helps to draw out trees instead of 
actually trying to follow through what happens in each 
function call 



Common orders of Growth
Be able to recall an example of each of the common orders of growth.  That way 
when you are faced with a new function you can compare it to what you already 
know

O(1)
def hello():
   print(“hi”)

O(log n)
def halve(n):
   if n == 0 
      return 1 
   else: 
halve(n//2)

O(n)
def countdown(n):
   if n == 0:
      return
   print(n)
   countdown(n-1)

O(n^2)
def maze(x, y):
   for i in range(x):
      for j in range(y):
         print(i, j)

O(2^n)
def fib(x):
   if x == 0 or x == 1:
      return x
   return fib(x - 1) + fib(x - 2)



factorial
def factorial(n):

   if n == 0:

      return 1

   return n * factorial(n - 1)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

Walk through an example

Notice that we have 4 + 1 function calls.
So the total amount of calls is one more 
than the size of the input.

In each function call we do a constant 
amount of work (multiply two number).

Therefore the order of growth is linear

What is the order of growth of factorial?



1.2 #5
def bar(n):
   if n % 2 == 1:
      return n + 1
   return n

def foo(n):
   if n < 1:
      return 2
   if n % 2 == 0:
      return foo(n - 1) \

 + foo(n - 2)
   return 1 + foo(n - 2)

This problem is a bit tricky!
Lets draw out the function calls

What is the order of growth of foo(bar(n))?

Before we even go into foo, it is important to know that 
bar will always return an even number. So our first input 
to foo will be even.

foo(even)

foo(odd) foo(even)

foo(odd)

foo(odd)

foo(even)foo(odd)

foo(even)foo(odd)foo(odd)

first we call foo on an 
even number
since n is even, we go 
into the second if clause: 
foo(n - 1) + foo(n - 2).

Now since n is even, 
subtracting 1 makes 
the value odd

and subtracting 2 
would make it 
even.

! Look at the last if statement !
Once n becomes odd, we will 
fall into this case for each 
recursive call. This looks 
familiar!! Look back at the 
examples page, what is the 
order of growth of foo(odd?

Again we 
produce two 
recursive calls, 
one to an even 
number and 
another to an 
odd one

this pattern 
continues until n 
becomes less than 1

Try to visualize the number of recursive calls as a grid.
Each recursive call is represented by the intersection 
of two lines

How many recursive 
calls are there on 
this side? 
(Hint: how many 
times do we can 
foo(n - 2) when n is 
odd?

How many recursive 
calls are there on 
this side?
(Hint: how many 
times do we call 
foo(n - 2) when n is 
even?

On the left since we decrement n by 2 each time, it 
would be something like n / 2 calls to foo until n 
becomes less than 1. The same can be said for the right 
How many intersection points are there total? 

(n / 2) * (n / 2) = n^2/4 = O(n^2)



Data Abstraction
Don’t assume you know how something works.

Abstraction is all around us; to turn on your computer you 
just press the power button. You don’t have to understand 
what signals are transferred through the wires on the 
inside of the computer.

The same is with data abstraction. To access the root of a 
tree, I don’t have to know if we used a list, or a string, or 
anything else to build it. I can just call a function that 
knows about this internal structure and happily use 
whatever it returns.


