
Disc 04
Orders of Growth
Data Abstraction

Orders of Growth Tips
Carefully examine the provided functions. Try running
through them with different kinds of input.

Ask yourself: how many iterations will this function go
through based on the size of the input?

For recursion it helps to draw out trees instead of
actually trying to follow through what happens in each
function call

Common orders of Growth
Be able to recall an example of each of the common orders of growth. That way
when you are faced with a new function you can compare it to what you already
know

O(1)
def hello():
 print(“hi”)

O(log n)
def halve(n):
 if n == 0
 return 1
 else:
halve(n//2)

O(n)
def countdown(n):
 if n == 0:
 return
 print(n)
 countdown(n-1)

O(n^2)
def maze(x, y):
 for i in range(x):
 for j in range(y):
 print(i, j)

O(2^n)
def fib(x):
 if x == 0 or x == 1:
 return x
 return fib(x - 1) + fib(x - 2)

factorial
def factorial(n):

 if n == 0:

 return 1

 return n * factorial(n - 1)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

Walk through an example

Notice that we have 4 + 1 function calls.
So the total amount of calls is one more
than the size of the input.

In each function call we do a constant
amount of work (multiply two number).

Therefore the order of growth is linear

What is the order of growth of factorial?

1.2 #5
def bar(n):
 if n % 2 == 1:
 return n + 1
 return n

def foo(n):
 if n < 1:
 return 2
 if n % 2 == 0:
 return foo(n - 1) \

 + foo(n - 2)
 return 1 + foo(n - 2)

This problem is a bit tricky!
Lets draw out the function calls

What is the order of growth of foo(bar(n))?

Before we even go into foo, it is important to know that
bar will always return an even number. So our first input
to foo will be even.

foo(even)

foo(odd) foo(even)

foo(odd)

foo(odd)

foo(even)foo(odd)

foo(even)foo(odd)foo(odd)

first we call foo on an
even number
since n is even, we go
into the second if clause:
foo(n - 1) + foo(n - 2).

Now since n is even,
subtracting 1 makes
the value odd

and subtracting 2
would make it
even.

! Look at the last if statement !
Once n becomes odd, we will
fall into this case for each
recursive call. This looks
familiar!! Look back at the
examples page, what is the
order of growth of foo(odd?

Again we
produce two
recursive calls,
one to an even
number and
another to an
odd one

this pattern
continues until n
becomes less than 1

Try to visualize the number of recursive calls as a grid.
Each recursive call is represented by the intersection
of two lines

How many recursive
calls are there on
this side?
(Hint: how many
times do we can
foo(n - 2) when n is
odd?

How many recursive
calls are there on
this side?
(Hint: how many
times do we call
foo(n - 2) when n is
even?

On the left since we decrement n by 2 each time, it
would be something like n / 2 calls to foo until n
becomes less than 1. The same can be said for the right
How many intersection points are there total?

(n / 2) * (n / 2) = n^2/4 = O(n^2)

Data Abstraction
Don’t assume you know how something works.

Abstraction is all around us; to turn on your computer you
just press the power button. You don’t have to understand
what signals are transferred through the wires on the
inside of the computer.

The same is with data abstraction. To access the root of a
tree, I don’t have to know if we used a list, or a string, or
anything else to build it. I can just call a function that
knows about this internal structure and happily use
whatever it returns.

