Discussion 03

Recursion
 Tree recursion

Recursion Facts

1. Base case:What is the simplest problem that you can solve? In other words, is there an input to the problem for which you automatically know what to return?
2. Make a recursive call! Assume that you have a working function: how can you use it by breaking down the original problem?
3. Combine the results. Now that you have the results of your recursive call, you might need to do some post-processing. This is not always necessary.

Recursion Visualization

It is helpful to think of each level of recursion as jumping down into a different frame.

Once you do you recursive call, you open
a new frame

How to communicate between frames

Think of your code as a timeline. Assume the function you are writing works correctly.

I.I: countdown

Write a function that counts down from n to I
def countdown(n):

$$
\begin{aligned}
& \text { if } \mathrm{n}<=0 \text { : } \\
& \text { return } \\
& \text { print(} \mathrm{n}) \\
& \text { countdown }(\mathrm{n}-1)
\end{aligned}
$$

I.I: countdown

Write a function that counts down from n to I

def countdown(n):

$$
\begin{aligned}
& \text { if } \mathrm{n}<=0 \text { : } \\
& \text { return } \\
& \text { print }(\mathrm{n}) \\
& \text { countdown }(\mathrm{n}-1)
\end{aligned}
$$

What are we asked to return? Nothing!
We just want to print out numbers

I.I: countdown

Write a function that counts down from n to I

def countdown(n):

```
if }\textrm{n}<=0\mathrm{ : Base Case:How do we know
                                we've printed out all of the
    return numbers from }\textrm{n}\mathrm{ to I?
print(n)
countdown(n - 1)
```


I.I: countdown

Write a function that counts down from n to I

def countdown(n):

```
if n <= 0: Base Case:How do we know we've printed out all of the
    return numbers from n to l?
    print(n) Print the number you're at
    right now!
countdown(n - 1)
```


I.I: countdown

Write a function that counts down from n to I

def countdown(n):

```
if }\textrm{n}<=0\mathrm{ : Base Case: How do we know we've printed out all of the
    return numbers from n to l?
    print(n)
    Print the number you're at
    right now!
```

countdown($\mathrm{n}-1$)

Assume that countdown works. Since we printed n, now we need to print everything from $n-1$ to 1 . Do this by recursively calling countdown on $n-1$

I.I: countup

Write a function that counts up from I to n by only changing one line in countdown

def countdown(n):
 if $\mathrm{n}<=0$:
 return

countdown ($\mathrm{n}-1$)
print(n)

I.I: countup

Write a function that counts up from I to n by only changing one line in countdown

def countdown(n):

Base Case: Same as countdown	if $\mathrm{n}<=0:$
	return

$$
\begin{aligned}
& \text { countdown(n }-1) \\
& \text { print(n) }
\end{aligned}
$$

I.I: countup

Write a function that counts up from I to n by only changing one line in countdown

def countdown(n):

Base Case: Same as countdown	if $\mathrm{n}<=0$:
	return

First we want to jump all the way down to I, so make the recursive call

$$
\text { countdown }(n-1)
$$

print(n)

I.I: countup

Write a function that counts up from I to n by only changing one line in countdown

def countdown(n):

Base Case: Same as countdown	if $\mathrm{n}<=0$:
	return

First we want to jump all the way down to I, so make the recursive call

```
countdown(n - 1)
```

Now print out the number

```
print(n)
```

Analyzing countdown

```
def countdown(n):
    if }\textrm{n}<=0\mathrm{ :
        return
print(n)
    countdown(n - 1)
```


What happens when we call countdown(3)?

Analyzing countdown

def countdown(n):

```
    if }\textrm{n}<=0\mathrm{ :
        return
```

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3
print(n)
countdown (n - 1)

What happens when we call countdown(3)?

Analyzing countdown

def countdown(n):

$$
\begin{aligned}
& \text { if } \mathrm{n}<=0 \text { : } \\
& \text { return }
\end{aligned}
$$

print(n)

$$
\text { countdown }(n-1)
$$

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

$$
\text { print(3) } \quad \mathrm{n}=3
$$

Work done after your recursive call (ie combining results)

Analyzing countdown
def countdown(n):

```
    if }\textrm{n}<=0\mathrm{ :
        return
    print(n)
    countdown(n - 1)
```

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

$$
n=2
$$

Work done after your recursive call (ie combining results)

What happens when we call countdown(3)?

Analyzing countdown

def countdown(n):

```
    if n <= 0:
        return
    print(n)
    countdown(n - 1)
```

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)

Analyzing countdown
def countdown(n):

```
    if n <= 0:
        return
print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)

Analyzing countdown

def countdown(n):

```
if n <= 0:
        return
    print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)

Analyzing countdown

def countdown(n):

```
if n <= 0:
        return
    print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)

Analyzing countdown

def countdown(n):

```
if n <= 0:
        return
    print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)

Analyzing countdown

def countdown(n):

```
if n <= 0:
        return
    print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)

There are no statements after the recursive call so nothing is done as we return out of the frames

Analyzing countdown

def countdown(n):

```
if n <= 0:
        return
    print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame

print(1)

Since $\mathrm{n}<=0$ is true, we go into the first 'if' statement and just return

$$
n=0
$$

Work done after your recursive call (ie combining results)
return None
return None

There are no statements
after the recursive call so nothing is done as we return out of the frames

Analyzing countdown

def countdown(n):

```
if }\textrm{n}<=0\mathrm{ :
        return
    print(n)
    countdown(n - 1)
```

What happens when we call countdown(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countdown(3) we have one frame where n is 3

Work done after your recursive call (ie combining results)
return None
return None
return None

There are no statements
Since $n<=0$ is true, we go into the first 'if' statement and just return

$$
n=0
$$

after the recursive call so nothing is done as we return out of the frames

Analyzing countup

```
def countup(n):
    if n <= 0:
        return
    countup(n - 1)
    print(n)
```

What happens when we call countup(3)?

Analyzing countup

```
def countup(n):
    if }\textrm{n}<=0\mathrm{ :
        return
countup(n - 1)
    print(n)
```

When we first call countup(3) we have one frame where n is 3

What happens when we call countup(3)?

Analyzing countup

```
def countup(n):
    if }\textrm{n}<=0\mathrm{ :
        return
    countup(n - 1)
    print(n)
```

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame

Work done after your recursive call (ie combining results)

Analyzing countup

```
def countup(n):
    if }\textrm{n}<=0\mathrm{ :
        return
    countup(n - 1)
    print(n)
```

What happens when we call countup(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame

Work done after your recursive call (ie combining results)

Analyzing countup

```
def countup(n):
    if }\textrm{n}<=0\mathrm{ :
        return
    countup(n - 1)
    print(n)
```

What happens when we call countup(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame

Work done after your recursive call (ie combining results)

Analyzing countup

```
def countup(n):
    if n <= 0:
        return
    countup(n - 1)
    print(n)
```

What happens when we call countup(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame

Work done after your recursive call (ie combining results)

Analyzing countup

```
def countup(n):
    if }\textrm{n}<=0\mathrm{ :
        return
    countup(n - 1)
    print(n)
```

What happens when we call countup(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame
where n is 3

$$
n=0
$$

Work done after your recursive call (ie combining results)

Since $n<=0$ is true, we go into the first 'if' statement and just return

Analyzing countup

def countup(n):

```
if n <= 0:
    return
```

countup $(n-1)$
print(n)

What happens when we call countup(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame

Analyzing countup

def countup(n):

```
if n <= 0:
        return
```

countup $(n-1)$
print(n)

What happens when we call countup(3)?

Work done before your recursive call (ie base case, preprocessing)

When we first call countup(3) we have one frame

print(3)
return None

print(2)
return None

Since $\mathrm{n}<=0$ is true, we go into the first 'if' statement and just return

$$
n=0
$$

countdown

Work done after your recursive
 call (ie combining results)
return None
return None
return None

There are no
statements after the recursive call so nothing is done as we return out of the frames

countup

Tree Recursion \#|

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me. Assume n is positive.

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me. Assume n is positive.

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me. Assume n is positive.

Step I: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

$$
\int-1 \text { way }
$$

$$
\sqrt{1}+1=2 \text { ways }
$$

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

$\sqrt{1}+1=2$ ways
Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

Now in how many ways can I do the rest of the
steps? (Assume that you have a count_stairs_ways function that works)

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

$$
\int \text { I way }
$$

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

Now I know the following facts:
I. I can take either I OR 2 steps from my current step
2. Once I take a step(s), I can recursively call my function to determine how many different ways there are for me to continue
Now the million dollar question is: How do I combine these results?

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

Now I know the following facts:
I. I can take either I OR 2 steps from my current step
2. Once I take a step(s), I can recursively call my function to determine how many different ways there are for me to continue
Now the million dollar question is: How do I combine these results?
Step 3: Figure out how your two recursive calls are related. How should you combine their results to figure out what count_stair_ways (n) does?

I want to go up a flight of stairs that has n steps. I can either take I or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me.Assume n is positive.

Step I:Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the answer is?

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base case?

If I am the red dot, I can either move up I step or 2 steps, to get closer to the top of the n steps

Now I know the following facts:
I. I can take either I OR 2 steps from my current step
2. Once I take a step(s), I can recursively call my function to determine how many different ways there are for me to continue
Now the million dollar question is: How do I combine these results?
Step 3: Figure out how your two recursive calls are related. How should you combine their results to figure out what count_stair_ways(n) does?
Add them! If I take I step, then the total number of remaining combination of steps is count_stair_ways(n-I). If I take 2 steps, then the remaining combination of steps is count_stair_ways(n-2). Since those encompass all of the options I could possibly have from the current step, adding them will ensure I counted all the possible combination of steps from the current step to the top. So we get count_stair_ways(n-I) + count_stair_ways(n-2).

Putting it all together

Put the orange text from the previous slide into code:

```
def count_stair_ways(n):
    if }\textrm{n}<=2\mathrm{ 2:
    return n
    return count_stair_ways(n-1) + count_stair_ways(n-2)
```


Tree Recursion \#2

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($M-I, N-I$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($M-I, N-I$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($M-I, N-I$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

$$
E x: M=2, N=2
$$

0		Note: the points are in the
$(0, \mathrm{I})$	(I, I)	MIDDLE of each

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N, making it easier to start the path at position (M-I,N-I).

Ex: $M=2, N=2$

Note: the points are in the
MIDDLE of each
square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0 : Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths).We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$).

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Ex: $M=2, N=2$

are in the
MIDDLE of each
square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position $(\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I})$.

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Note: the points are in the
MIDDLE of each
square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$).

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Note: the points are in the
MIDDLE of each square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position $(M-I, N-I)$.

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Ex: $M=2, N=2$

Note: the points are in the
MIDDLE of each square

Can only move left

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.
Step 0 : Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position $(M-I, N-I)$.

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Note: the points are in the
MIDDLE of each square

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.
Step 0: Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position $(M-I, N-I)$.

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Note: the points are in the
MIDDLE of each square

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position $(M-I, N-I)$.

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

Note: the points are in the
MIDDLE of each square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$).

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

Note: the points are in the
MIDDLE of each

square
MIDDLE of each

$$
\begin{aligned}
& \text { So if } \mathrm{N} \text { is I OR M is I, } \\
& \text { we know there is only } \\
& \text { I path }
\end{aligned}
$$

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$).

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

Note: the points are in the
MIDDLE of each

square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$).

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths($N, M-1$) and paths($N-1, M$)

Note: the points

are in the
MIDDLE of each square

$$
E x: M=2, N=2
$$

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let's draw a picture!

Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths).We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position $(M-I, N-I)$.

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths($N, M-1$) and paths($N-1, M$)

Can only move left

Note: the points are in the MIDDLE of each square

$$
E x: M=2, N=2
$$

> So if N is I OR M is I, we know there is only 1 path

Step 3: Combine the results.
This is almost identical to count_stair_ways. I can get to $(0,0)$ by going one left (and seeing how many paths there are in the smaller grid) or going down (and seeing how many path there are in that smaller grid). The total number of paths is the sum of those two results.

Consider an insect in an M by N grid. The insect starts at the bottom left corner, $(0,0)$, and wants to end up at the top right corner ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$). The insect can only move up and right. Write a function paths that counts the total number of different paths the insect can take from the start to the goal.
Step 0: Understand what is asked. Let's draw a picture!
Note:The problem is ask the different paths from the bottom left to the top right, if we can only move up and right. This is the same s the number of different paths from the top right to the bottom left, if we can only move down and left (just reverse the direction of each of the paths). We are going to be working with the second case, because the input to paths is M and N , making it easier to start the path at position ($\mathrm{M}-\mathrm{I}, \mathrm{N}-\mathrm{I}$).

Step I: Identify your base case. For what grids do you know for sure how many paths there are? Are there certain grids that "force" a path?

Can only move left

Step 2: Break down your problem into recursive calls. How you can you simplify the original problem?

At each point you can only go left or down. So we have paths($N, M-1$) and paths($N-1, M$)

Note: the points are in the
MIDDLE of each square

$$
E x: M=2, N=2
$$

$\rightarrow \rightarrow$

Step 3: Combine the results.
This is almost identical to count_stair_ways. I can get to $(0,0)$ by going one left (and seeing how many paths there are in the smaller grid) or going down (and seeing how many path there are in that smaller grid). The total number of paths is the sum of those two results.

So we get paths $(\mathrm{N}, \mathrm{M}-\mathrm{I})+$ paths $(\mathrm{N}-\mathrm{I}, \mathrm{M})$

Putting it all together

Put the orange text from the previous slide into code:

```
def paths(m, n):
    if m == 1 or n == 1:
    return 1
    return paths(m - 1, n) + paths(n,m - 1)
```


Tree Recursion \#3

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of $n 2$. Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?
Hint: what if total is nl or n 2 ?

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?
Hint: what if total is nl or n 2 ?
If the total is n I or $n 2,1$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?

Hint: what if total is nl or n ?
If the total is n I or $n 2,1$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

Hint: when are you 100% sure that you cannot use nI or n 2 to make total?

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?

Hint: what if total is nl or n ?
If the total is n I or $n 2,1$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

Hint: when are you 100% sure that you cannot use nl or n 2 to make total?
If the total is smaller $n I$ and $n 2$, there is no way I can use $n I$ or $n 2$ to print total copies. In this case, I should return False.

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?

Hint: what if total is nl or n 2 ?
If the total is n I or $n 2,1$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

Hint: when are you 100% sure that you cannot use nl or n 2 to make total?
If the total is smaller nI and n 2 , there is no way I can use nI or n 2 to print total copies. In this case, I should return False.

Step 2: How should we simplify the problem? How can I make total get closer

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?
Hint: what if total is nl or n 2 ?
If the total is n I or $n 2, I$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

Hint: when are you 100% sure that you cannot use nl or n 2 to make total?
If the total is smaller $n \mid$ and $n 2$, there is no way I can use $n l$ or $n 2$ to print total copies. In this case, I should return False.

Step 2: How should we simplify the problem? How can I make total get closer
We start from total and try to get to our base case. At each step, we can print nl copies or n 2 copies. Again, we are faced with a recursive case similar to what we have seen.

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?
Hint: what if total is nl or n 2 ?
If the total is n I or $n 2, I$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

Hint: when are you 100% sure that you cannot use nl or n 2 to make total?
If the total is smaller $n \mid$ and $n 2$, there is no way I can use $n l$ or $n 2$ to print total copies. In this case, I should return False.

Step 2: How should we simplify the problem? How can I make total get closer
We start from total and try to get to our base case. At each step, we can print nl copies or n 2 copies. Again, we are faced with a recursive case similar to what we have seen.

We either see if we can get total to be nl or n 2 by decrementing it by nl (has_sum(total - nl, nl, $\mathrm{n} 2)$) or we see if we can get to n 1 or n 2 by decrementing by n 2 (has_sum(total - $\mathrm{n} 2, \mathrm{n} 1, \mathrm{n} 2$))

The TAs want to print handouts for their students. However, for some unfathomable reason, both printers are broken; the first printer only prints multiples of $n \mathrm{l}$, and the second printer only prints multiples of n 2 . Help the TAs figure out whether or not it is possible to print an exact number of handouts!

Step I: Identify the base case. How do you know that you can make total copies? How do you know if you definitely cannot make total copies? What's the simplest input?
Hint: what if total is nl or n 2 ?
If the total is n I or $n 2, I$ just use I multiple of n I or $n 2$ to attain my goal. So in this case I should return True.

Hint: when are you 100% sure that you cannot use nl or n 2 to make total?
If the total is smaller nI and n 2 , there is no way I can use nI or n 2 to print total copies. In this case, I should return False.

Step 2: How should we simplify the problem? How can I make total get closer
We start from total and try to get to our base case. At each step, we can print nl copies or n 2 copies. Again, we are faced with a recursive case similar to what we have seen.

We either see if we can get total to be nl or n 2 by decrementing it by nl (has_sum(total - nl, nl, $\mathrm{n} 2)$) or we see if we can get to n 1 or n 2 by decrementing by n 2 (has_sum(total - $\mathrm{n} 2, \mathrm{n} 1, \mathrm{n} 2$))

Step 3: Combine the results.
We are happy if either of our two recursive calls returns true. So we return true if has_sum(total $n 1, n 1, n 2$) or has_sum(total - $n 2, n 1, n 2$) returns True.

Putting it all together

Put the orange text from the previous slide into code:

```
def has_sum(total, n1, n2):
    if total == n1 or total == n2:
        return True
    elif total < n1 and total < n2:
    return False
    return has_sum(total - n1, n1, n2) or has_sum(total - n2, n1, n2)
```


Tree Recursion \#4

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies $50 \leq x \leq 60$, and Printer B prints a random y copies $130 \leq y \leq 140$. The TAs also relax their expectations: they are satisfied as long as they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes too much paper.)

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies $50 \leq x \leq$ 60 , and Printer B prints a random y copies $130 \leq y \leq 140$. The TAs also relax their expectations: they are satisfied as long as they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes too much paper.)

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies $50 \leq x \leq$ 60 , and Printer B prints a random y copies $130 \leq y \leq 140$. The TAs also relax their expectations: they are satisfied as long as they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper from inside the sum_range definition with both possible_min and possible_max set to 0 . We can always print 0 copies by not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that forces us to be in the range from lower and upper.

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies $50 \leq x \leq$ 60 , and Printer B prints a random y copies $130 \leq y \leq 140$. The TAs also relax their expectations: they are satisfied as long as they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper from inside the sum_range definition with both possible_min and possible_max set to 0 . We can always print 0 copies by not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that forces us to be in the range from lower and upper.

Step I: Base case(s)

How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could possibly print. By using a combination of printer A and printer B , we know for sure the number of copies we print is between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to reach lower, when possible_max is larger than upper it's game over.

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies $50 \leq \mathrm{x} \leq$ 60 , and Printer B prints a random y copies $130 \leq y \leq 140$. The TAs also relax their expectations: they are satisfied as long as they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper from inside the sum_range definition with both possible_min and possible_max set to 0 . We can always print 0 copies by not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that forces us to be in the range from lower and upper.

Step I: Base case(s)

How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could possibly print. By using a combination of printer A and printer B , we know for sure the number of copies we print is between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to reach lower, when possible_max is larger than upper it's game over.

Step 2: Recursive call

We're going to be calling our helper function recursively. At each step we can increment the possible_min by 50 or by 130 , depending on which printer we use. Similarly we can increment possible_max by 60 or 140 .

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies $50 \leq \mathrm{x} \leq$ 60 , and Printer B prints a random y copies $130 \leq y \leq 140$. The TAs also relax their expectations: they are satisfied as long as they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper from inside the sum_range definition with both possible_min and possible_max set to 0 . We can always print 0 copies by not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that forces us to be in the range from lower and upper.

Step I: Base case(s)

How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could possibly print. By using a combination of printer A and printer B , we know for sure the number of copies we print is between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to reach lower, when possible_max is larger than upper it's game over.

Step 2: Recursive call

We're going to be calling our helper function recursively. At each step we can increment the possible_min by 50 or by 130 , depending on which printer we use. Similarly we can increment possible_max by 60 or 140 .

Step 3: Combining the results

Assume that sum_range works. What should we do to the results of our recursive call? We're happy if either using the first printer OR the second printer forces us to be inside [lower, upper].

Putting it all together

Put the orange text from the previous slide into code:

```
def sum_range(lower, upper)
    def sum_range(possible_min, possible_max):
        if lower <= possible_min and possible_max <= upper:
            return True
        if upper < possible_min:
            return False
        return sum_range(possible_min + 50, possible_max + 60) or
            sum_range(possible_min + 130, possible_max + 140)
    return sum_range(0, 0)
```

