
Discussion 03
Recursion

Tree recursion



Recursion Facts
1. Base case: What is the simplest problem that you 

can solve? In other words, is there an input to the 
problem for which you automatically know what 
to return?

2. Make a recursive call! Assume that you have a 
working function: how can you use it by breaking 
down the original problem?

3. Combine the results. Now that you have the 
results of your recursive call, you might need to 
do some post-processing. This is not always 
necessary.



Recursion Visualization
It is helpful to think of each level of recursion as 
jumping down into a different frame.

Work done before your 
recursive call (ie base 
case, preprocessing)

Recursive call

Work done after your 
recursive call (ie 

combining results)

Once you do you 
recursive call, you open 

a new frame

Previous frame



How to communicate between frames

Once you do you 
recursive call, you open 

a new frame

Previous frame

Pass values down 
as arguments

Pass values up in 
return statements

Think of your code as a timeline. Assume the function you are writing works correctly.

What work 
do you need to do to 

combine the results of the 
recursive call and the 
parameters you were 

working with 
before?

What work do you 
need to do in order to 

pass in the correct 
parameters for the next 

function call? 



1.1: countdown

def countdown(n):

   if n <= 0:

      return

   print(n)

   countdown(n - 1)

Write a function that counts down from n to 1
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1.1: countdown

def countdown(n):

   if n <= 0:

      return

   print(n)

   countdown(n - 1)

Write a function that counts down from n to 1

What are we asked to return? Nothing! 
We just want to print out numbers

Base Case: How do we know 
we’ve printed out all of the 
numbers from n to 1?

Print the number you’re at 
right now!

Assume that countdown works. Since we printed n, now 
we need to print everything from n - 1 to 1. Do this by 
recursively calling countdown on n - 1



def countdown(n):

   if n <= 0:

      return

   countdown(n - 1)

   print(n)

1.1: countup
Write a function that counts up from 1 to n by only changing one line in countdown



def countdown(n):

   if n <= 0:

      return

   countdown(n - 1)

   print(n)
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Base Case: Same as 
countdown

Write a function that counts up from 1 to n by only changing one line in countdown
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1.1: countup

Base Case: Same as 
countdown

First we want to jump all the 
way down to 1, so make the 
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def countdown(n):

   if n <= 0:

      return

   countdown(n - 1)

   print(n)

1.1: countup

Base Case: Same as 
countdown

First we want to jump all the 
way down to 1, so make the 
recursive call

Now print out the number

Write a function that counts up from 1 to n by only changing one line in countdown
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call countdown(3)?
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n = 3

n = 2

n = 1

n = 0

Work done 
before your 

recursive call (ie 
base case, 

preprocessing)

Work done after 
your recursive 

call (ie combining 
results)

print(3)

print(2)

print(1)

Since n <= 0 is true, 
we go into the first 
‘if ’ statement and 
just return

There are no 
statements after the 
recursive call so 
nothing is done as 
we return out of the 
frames
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After the 
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print(n)

When we first call 
countup(3) we 
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countup(1)

countup(0)

print(1)

print(2)

print(3)

return None

return None

return None

Work done 
before your 

recursive call (ie 
base case, 

preprocessing)

Work done after 
your recursive 

call (ie combining 
results)

Since n <= 0 is true, 
we go into the first 
‘if ’ statement and 
just return

countdown countup



Tree Recursion #1

I want to go up a flight of stairs that has n steps. I can 
either take 1 or 2 steps each time. How many 
different ways can I go up this flight of stairs? Write a 
function count_stair_ways that solves this problem 
for me. Assume n is positive.
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how many different 
ways there are for me 
to continue
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combine these results?



I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many 
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves 
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the 
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base 
case?

If I am the red dot, I 
can either move up 1 
step or 2 steps, to get 
closer to the top of the 
n steps

tak
e 1

 ste
p

take 2 steps

?

?
Now in how many ways 
can I do the rest of the 
steps? (Assume that you 
have a count_stairs_ways 
function that works)

count_stair_ways(n-1)

count_stair_ways(n-2)

Now I know the following 
facts:
1. I can take either 1 OR 

2 steps from my 
current step

2. Once I take a step(s), I 
can recursively call my 
function to determine 
how many different 
ways there are for me 
to continue

Now the million dollar 
question is: How do I 
combine these results?

Step 3: Figure out how your two recursive calls are related. How should you combine their results to 
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this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the 
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base 
case?

If I am the red dot, I 
can either move up 1 
step or 2 steps, to get 
closer to the top of the 
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Now in how many ways 
can I do the rest of the 
steps? (Assume that you 
have a count_stairs_ways 
function that works)

count_stair_ways(n-1)

count_stair_ways(n-2)

Now I know the following 
facts:
1. I can take either 1 OR 

2 steps from my 
current step

2. Once I take a step(s), I 
can recursively call my 
function to determine 
how many different 
ways there are for me 
to continue

Now the million dollar 
question is: How do I 
combine these results?

Step 3: Figure out how your two recursive calls are related. How should you combine their results to 
figure out what count_stair_ways(n) does?
Add them! If I take 1 step, then the total number of remaining combination of steps is 
count_stair_ways(n-1). If I take 2 steps, then the remaining combination of steps is 
count_stair_ways(n-2). Since those encompass all of the options I could possibly have from the 
current step, adding them will ensure I counted all the possible combination of steps from the 
current step to the top. So we get count_stair_ways(n-1) + count_stair_ways(n-2).



def count_stair_ways(n):

    if n <= 2:

        return n

    return count_stair_ways(n-1) + count_stair_ways(n-2)

Putting it all together
Put the orange text from the previous slide into code:



Tree Recursion #2

Consider an insect in an M by N grid. The insect 
starts at the bottom left corner, (0, 0), and wants to 
end up at the top right corner (M - 1, N - 1). The 
insect can only move up and right. Write a function 
paths that counts the total number of different paths 
the insect can take from the start to the goal.
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Step 0: Understand what is asked. Let’s draw a picture!
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Note: The problem is ask the different paths from the bottom left 
to the top right, if we can only move up and right. This is the same 
s the number of different paths from the top right to the bottom 
left, if we can only move down and left (just reverse the direction 
of each of the paths). We are going to be working with the second 
case, because the input to paths is M and N, making it easier to 
start the path at position (M - 1, N - 1).
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we know there is only 
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there certain grids that “force” a 
path?
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Step 2: Break down your problem into recursive calls. 
How you can you simplify the original problem?
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what grids do you know for sure 
how many paths there are? Are 
there certain grids that “force” a 
path?

Note: The problem is ask the different paths from the bottom left 
to the top right, if we can only move up and right. This is the same 
s the number of different paths from the top right to the bottom 
left, if we can only move down and left (just reverse the direction 
of each of the paths). We are going to be working with the second 
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Can only 
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Can only 
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So if N is 1 OR M is 1, 
we know there is only 
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Step 2: Break down your problem into recursive calls. 
How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths(N, M - 1) and paths(N-1, M)
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Step 1: Identify your base case. For 
what grids do you know for sure 
how many paths there are? Are 
there certain grids that “force” a 
path?

Note: The problem is ask the different paths from the bottom left 
to the top right, if we can only move up and right. This is the same 
s the number of different paths from the top right to the bottom 
left, if we can only move down and left (just reverse the direction 
of each of the paths). We are going to be working with the second 
case, because the input to paths is M and N, making it easier to 
start the path at position (M - 1, N - 1).

Can only 
move down

Can only 
move left

So if N is 1 OR M is 1, 
we know there is only 
1 path

Step 2: Break down your problem into recursive calls. 
How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths(N, M - 1) and paths(N-1, M)

Step 3: Combine the results. 
This is almost identical to count_stair_ways.
I can get to (0, 0) by going one left (and 
seeing how many paths there are in the 
smaller grid) or going down (and seeing 
how many path there are in that smaller 
grid). The total number of paths is the sum 
of those two results. 
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Step 1: Identify your base case. For 
what grids do you know for sure 
how many paths there are? Are 
there certain grids that “force” a 
path?

Note: The problem is ask the different paths from the bottom left 
to the top right, if we can only move up and right. This is the same 
s the number of different paths from the top right to the bottom 
left, if we can only move down and left (just reverse the direction 
of each of the paths). We are going to be working with the second 
case, because the input to paths is M and N, making it easier to 
start the path at position (M - 1, N - 1).

Can only 
move down

Can only 
move left

So if N is 1 OR M is 1, 
we know there is only 
1 path

Step 2: Break down your problem into recursive calls. 
How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths(N, M - 1) and paths(N-1, M)

Step 3: Combine the results. 
This is almost identical to count_stair_ways.
I can get to (0, 0) by going one left (and 
seeing how many paths there are in the 
smaller grid) or going down (and seeing 
how many path there are in that smaller 
grid). The total number of paths is the sum 
of those two results. 

So we get paths(N, M-1) + paths(N-1, M)



Putting it all together

def paths(m, n):

   if m == 1 or n == 1:

      return 1

   return paths(m - 1, n) + paths(n, m - 1)

Put the orange text from the previous slide into code:



Tree Recursion #3

The TAs want to print handouts for their students. 
However, for some unfathomable reason, both 
printers are broken; the first printer only prints 
multiples of n1, and the second printer only prints 
multiples of n2. Help the TAs figure out whether or 
not it is possible to print an exact number of 
handouts!
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The TAs want to print handouts for their students. However, for some unfathomable reason, both 
printers are broken; the first printer only prints multiples of n1, and the second printer only prints 
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of 
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know 
if you definitely cannot make total copies? What’s the simplest input?

Step 2: How should we simplify the problem? How can I make total get closer

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should 
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

If the total is smaller n1 and n2, there is no way I can use n1 or n2 to print total copies. In this 
case, I should return False.

We start from total and try to get to our base case. At each step, we can print n1 copies or n2 
copies. Again, we are faced with a recursive case similar to what we have seen.

We either see if we can get total to be n1 or n2 by decrementing it by n1 (has_sum(total - n1, n1 , 
n2)) or we see if we can get to n1 or n2 by decrementing by n2 (has_sum(total - n2, n1, n2))
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We are happy if either of our two recursive calls returns true. So we return true if has_sum(total - 
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Putting it all together

def has_sum(total, n1, n2):

   if total == n1 or total == n2:

      return True

   elif total < n1 and total < n2:

      return False

   return has_sum(total - n1, n1, n2) or has_sum(total - n2, n1, n2)

Put the orange text from the previous slide into code:



Tree Recursion #4
The next day, the printers break down even more! 
Each time they are used, Printer A prints a random x 
copies 50 ≤ x ≤ 60, and Printer B prints a random y 
copies 130 ≤ y ≤ 140. The TAs also relax their 
expectations: they are satisfied as long as they get at 
least lower, but no more than upper, copies printed. 
(More than upper copies is unacceptable because it 
wastes too much paper.) 
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We need to keep track of the smallest number of copies our printers could print and the largest number of copies we 
could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper 
function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper 
from inside the sum_range definition with both possible_min and possible_max set to 0. We can always print 0 copies by 
not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that 
forces us to be in the range from lower and upper.
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Step 1: Base case(s)
How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could 
possibly print. By using a combination of printer A and printer B, we know for sure the number of copies we print is 
between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than 
upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to 
reach lower, when possible_max is larger than upper it’s game over.
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Step 2: Recursive call
We’re going to be calling our helper function recursively. At each step we can increment the possible_min by 50 or 
by 130, depending on which printer we use. Similarly we can increment possible_max by 60 or 140. 
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Step 1: Base case(s)
How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could 
possibly print. By using a combination of printer A and printer B, we know for sure the number of copies we print is 
between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than 
upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to 
reach lower, when possible_max is larger than upper it’s game over.

Step 2: Recursive call
We’re going to be calling our helper function recursively. At each step we can increment the possible_min by 50 or 
by 130, depending on which printer we use. Similarly we can increment possible_max by 60 or 140. 

Step 3: Combining the results
Assume that sum_range works. What should we do to the results of our recursive call? We’re happy if either using the first 
printer OR the second printer forces us to be inside [lower, upper].



def sum_range(lower, upper)
def sum_range(possible_min, possible_max):
   if lower <= possible_min and possible_max <= upper:
      return True
   if upper < possible_min:
      return False
   return sum_range(possible_min + 50, possible_max + 60) or

sum_range(possible_min + 130, possible_max + 140)
return sum_range(0, 0)

Putting it all together
Put the orange text from the previous slide into code:


