
Discussion 03
Recursion

Tree recursion

Recursion Facts
1. Base case: What is the simplest problem that you

can solve? In other words, is there an input to the
problem for which you automatically know what
to return?

2. Make a recursive call! Assume that you have a
working function: how can you use it by breaking
down the original problem?

3. Combine the results. Now that you have the
results of your recursive call, you might need to
do some post-processing. This is not always
necessary.

Recursion Visualization
It is helpful to think of each level of recursion as
jumping down into a different frame.

Work done before your
recursive call (ie base
case, preprocessing)

Recursive call

Work done after your
recursive call (ie

combining results)

Once you do you
recursive call, you open

a new frame

Previous frame

How to communicate between frames

Once you do you
recursive call, you open

a new frame

Previous frame

Pass values down
as arguments

Pass values up in
return statements

Think of your code as a timeline. Assume the function you are writing works correctly.

What work
do you need to do to

combine the results of the
recursive call and the
parameters you were

working with
before?

What work do you
need to do in order to

pass in the correct
parameters for the next

function call?

1.1: countdown

def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

Write a function that counts down from n to 1

1.1: countdown

def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

Write a function that counts down from n to 1

What are we asked to return? Nothing!
We just want to print out numbers

1.1: countdown

def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

Write a function that counts down from n to 1

What are we asked to return? Nothing!
We just want to print out numbers

Base Case: How do we know
we’ve printed out all of the
numbers from n to 1?

1.1: countdown

def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

Write a function that counts down from n to 1

What are we asked to return? Nothing!
We just want to print out numbers

Base Case: How do we know
we’ve printed out all of the
numbers from n to 1?

Print the number you’re at
right now!

1.1: countdown

def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

Write a function that counts down from n to 1

What are we asked to return? Nothing!
We just want to print out numbers

Base Case: How do we know
we’ve printed out all of the
numbers from n to 1?

Print the number you’re at
right now!

Assume that countdown works. Since we printed n, now
we need to print everything from n - 1 to 1. Do this by
recursively calling countdown on n - 1

def countdown(n):

 if n <= 0:

 return

 countdown(n - 1)

 print(n)

1.1: countup
Write a function that counts up from 1 to n by only changing one line in countdown

def countdown(n):

 if n <= 0:

 return

 countdown(n - 1)

 print(n)

1.1: countup

Base Case: Same as
countdown

Write a function that counts up from 1 to n by only changing one line in countdown

def countdown(n):

 if n <= 0:

 return

 countdown(n - 1)

 print(n)

1.1: countup

Base Case: Same as
countdown

First we want to jump all the
way down to 1, so make the
recursive call

Write a function that counts up from 1 to n by only changing one line in countdown

def countdown(n):

 if n <= 0:

 return

 countdown(n - 1)

 print(n)

1.1: countup

Base Case: Same as
countdown

First we want to jump all the
way down to 1, so make the
recursive call

Now print out the number

Write a function that counts up from 1 to n by only changing one line in countdown

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

What happens when we
call countdown(3)?

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

What happens when we
call countdown(3)?

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)
When we first call
countdown(3) we
have one frame
where n is 3

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

What happens when we
call countdown(3)?

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

When we first call
countdown(3) we
have one frame
where n is 3

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

print(1)

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

print(1)

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

countdown(0)

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

print(1)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

countdown(0)

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

print(1)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

There are no statements
after the recursive call so
nothing is done as we
return out of the frames

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

countdown(0) return None

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

print(1)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

There are no statements
after the recursive call so
nothing is done as we
return out of the frames

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

countdown(0) return None

return None

Analyzing countdown
def countdown(n):

 if n <= 0:

 return

 print(n)

 countdown(n - 1)

n = 3

n = 2

What happens when we
call countdown(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

print(3)

print(2)

print(1)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

There are no statements
after the recursive call so
nothing is done as we
return out of the frames

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

countdown(0) return None

return None

return None

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

What happens when we
call countup(3)?

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

What happens when we
call countup(3)?

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)
When we first call
countup(3) we
have one frame
where n is 3

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)
When we first call
countup(3) we
have one frame
where n is 3

countup(2)

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

n = 1

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)
When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)
When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

countup(0)

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

countup(0)

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

After the
recursive call,
we do print(n)

When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

countup(0)

print(1)

return None

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

After the
recursive call,
we do print(n)

When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

countup(0)

print(1)

print(2)

return None

return None

Analyzing countup
def countup(n):

 if n <= 0:

 return

 countup(n - 1)

 print(n)

n = 3

n = 2

What happens when we
call countup(3)?

n = 1

n = 0

Work done before your
recursive call (ie base
case, preprocessing)

Work done after your
recursive call (ie

combining results)

Since n <= 0 is true, we
go into the first ‘if ’
statement and just return

After the
recursive call,
we do print(n)

When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

countup(0)

print(1)

print(2)

print(3)

return None

return None

return None

n = 3

n = 2

n = 1

n = 0

Work done
before your

recursive call (ie
base case,

preprocessing)

Work done after
your recursive

call (ie combining
results)

print(3)

print(2)

print(1)

Since n <= 0 is true,
we go into the first
‘if ’ statement and
just return

There are no
statements after the
recursive call so
nothing is done as
we return out of the
frames

When we first call
countdown(3) we
have one frame
where n is 3

countdown(2)

countdown(1)

countdown(0) return None

return None

return None

n = 3

n = 2

n = 1

n = 0

After the
recursive
call, we do
print(n)

When we first call
countup(3) we
have one frame
where n is 3

countup(2)

countup(1)

countup(0)

print(1)

print(2)

print(3)

return None

return None

return None

Work done
before your

recursive call (ie
base case,

preprocessing)

Work done after
your recursive

call (ie combining
results)

Since n <= 0 is true,
we go into the first
‘if ’ statement and
just return

countdown countup

Tree Recursion #1

I want to go up a flight of stairs that has n steps. I can
either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a
function count_stair_ways that solves this problem
for me. Assume n is positive.

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

take 2 steps

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

take 2 steps

?

?
Now in how many ways
can I do the rest of the
steps? (Assume that you
have a count_stairs_ways
function that works)

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

take 2 steps

?

?
Now in how many ways
can I do the rest of the
steps? (Assume that you
have a count_stairs_ways
function that works)

count_stair_ways(n-1)

count_stair_ways(n-2)

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

take 2 steps

?

?
Now in how many ways
can I do the rest of the
steps? (Assume that you
have a count_stairs_ways
function that works)

count_stair_ways(n-1)

count_stair_ways(n-2)

Now I know the following
facts:
1. I can take either 1 OR

2 steps from my
current step

2. Once I take a step(s), I
can recursively call my
function to determine
how many different
ways there are for me
to continue

Now the million dollar
question is: How do I
combine these results?

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

take 2 steps

?

?
Now in how many ways
can I do the rest of the
steps? (Assume that you
have a count_stairs_ways
function that works)

count_stair_ways(n-1)

count_stair_ways(n-2)

Now I know the following
facts:
1. I can take either 1 OR

2 steps from my
current step

2. Once I take a step(s), I
can recursively call my
function to determine
how many different
ways there are for me
to continue

Now the million dollar
question is: How do I
combine these results?

Step 3: Figure out how your two recursive calls are related. How should you combine their results to
figure out what count_stair_ways(n) does?

I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many
different ways can I go up this flight of stairs? Write a function count_stair_ways that solves
this problem for me. Assume n is positive.

Step 1: Identify your base case
What is the simplest form of the problem? For how many steps do you immediately know what the
answer is?

1 way 1 + 1 = 2 ways

Step 2: How do you simplify your problem? Is there a way we can work from n steps to the base
case?

If I am the red dot, I
can either move up 1
step or 2 steps, to get
closer to the top of the
n steps

tak
e 1

 ste
p

take 2 steps

?

?
Now in how many ways
can I do the rest of the
steps? (Assume that you
have a count_stairs_ways
function that works)

count_stair_ways(n-1)

count_stair_ways(n-2)

Now I know the following
facts:
1. I can take either 1 OR

2 steps from my
current step

2. Once I take a step(s), I
can recursively call my
function to determine
how many different
ways there are for me
to continue

Now the million dollar
question is: How do I
combine these results?

Step 3: Figure out how your two recursive calls are related. How should you combine their results to
figure out what count_stair_ways(n) does?
Add them! If I take 1 step, then the total number of remaining combination of steps is
count_stair_ways(n-1). If I take 2 steps, then the remaining combination of steps is
count_stair_ways(n-2). Since those encompass all of the options I could possibly have from the
current step, adding them will ensure I counted all the possible combination of steps from the
current step to the top. So we get count_stair_ways(n-1) + count_stair_ways(n-2).

def count_stair_ways(n):

 if n <= 2:

 return n

 return count_stair_ways(n-1) + count_stair_ways(n-2)

Putting it all together
Put the orange text from the previous slide into code:

Tree Recursion #2

Consider an insect in an M by N grid. The insect
starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The
insect can only move up and right. Write a function
paths that counts the total number of different paths
the insect can take from the start to the goal.

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths(N, M - 1) and paths(N-1, M)

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths(N, M - 1) and paths(N-1, M)

Step 3: Combine the results.
This is almost identical to count_stair_ways.
I can get to (0, 0) by going one left (and
seeing how many paths there are in the
smaller grid) or going down (and seeing
how many path there are in that smaller
grid). The total number of paths is the sum
of those two results.

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0, 0), and wants to
end up at the top right corner (M - 1, N - 1). The insect can only move up and right. Write a function
paths that counts the total number of different paths the insect can take from the start to the goal.

Step 0: Understand what is asked. Let’s draw a picture!

(0, 0) (1, 0)

(1, 1)(0, 1)

Ex: M = 2, N = 2
Note: the points

are in the
MIDDLE of each

square

Step 1: Identify your base case. For
what grids do you know for sure
how many paths there are? Are
there certain grids that “force” a
path?

Note: The problem is ask the different paths from the bottom left
to the top right, if we can only move up and right. This is the same
s the number of different paths from the top right to the bottom
left, if we can only move down and left (just reverse the direction
of each of the paths). We are going to be working with the second
case, because the input to paths is M and N, making it easier to
start the path at position (M - 1, N - 1).

Can only
move down

Can only
move left

So if N is 1 OR M is 1,
we know there is only
1 path

Step 2: Break down your problem into recursive calls.
How you can you simplify the original problem?

At each point you can only go left or down.
So we have paths(N, M - 1) and paths(N-1, M)

Step 3: Combine the results.
This is almost identical to count_stair_ways.
I can get to (0, 0) by going one left (and
seeing how many paths there are in the
smaller grid) or going down (and seeing
how many path there are in that smaller
grid). The total number of paths is the sum
of those two results.

So we get paths(N, M-1) + paths(N-1, M)

Putting it all together

def paths(m, n):

 if m == 1 or n == 1:

 return 1

 return paths(m - 1, n) + paths(n, m - 1)

Put the orange text from the previous slide into code:

Tree Recursion #3

The TAs want to print handouts for their students.
However, for some unfathomable reason, both
printers are broken; the first printer only prints
multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or
not it is possible to print an exact number of
handouts!

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Hint: what if total is n1 or n2?

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

If the total is smaller n1 and n2, there is no way I can use n1 or n2 to print total copies. In this
case, I should return False.

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Step 2: How should we simplify the problem? How can I make total get closer

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

If the total is smaller n1 and n2, there is no way I can use n1 or n2 to print total copies. In this
case, I should return False.

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Step 2: How should we simplify the problem? How can I make total get closer

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

If the total is smaller n1 and n2, there is no way I can use n1 or n2 to print total copies. In this
case, I should return False.

We start from total and try to get to our base case. At each step, we can print n1 copies or n2
copies. Again, we are faced with a recursive case similar to what we have seen.

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Step 2: How should we simplify the problem? How can I make total get closer

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

If the total is smaller n1 and n2, there is no way I can use n1 or n2 to print total copies. In this
case, I should return False.

We start from total and try to get to our base case. At each step, we can print n1 copies or n2
copies. Again, we are faced with a recursive case similar to what we have seen.

We either see if we can get total to be n1 or n2 by decrementing it by n1 (has_sum(total - n1, n1 ,
n2)) or we see if we can get to n1 or n2 by decrementing by n2 (has_sum(total - n2, n1, n2))

The TAs want to print handouts for their students. However, for some unfathomable reason, both
printers are broken; the first printer only prints multiples of n1, and the second printer only prints
multiples of n2. Help the TAs figure out whether or not it is possible to print an exact number of
handouts!

Step 1: Identify the base case. How do you know that you can make total copies? How do you know
if you definitely cannot make total copies? What’s the simplest input?

Step 2: How should we simplify the problem? How can I make total get closer

Hint: what if total is n1 or n2?

If the total is n1 or n2, I just use 1 multiple of n1 or n2 to attain my goal. So in this case I should
return True.

Hint: when are you 100% sure that you cannot use n1 or n2 to make total?

If the total is smaller n1 and n2, there is no way I can use n1 or n2 to print total copies. In this
case, I should return False.

We start from total and try to get to our base case. At each step, we can print n1 copies or n2
copies. Again, we are faced with a recursive case similar to what we have seen.

We either see if we can get total to be n1 or n2 by decrementing it by n1 (has_sum(total - n1, n1 ,
n2)) or we see if we can get to n1 or n2 by decrementing by n2 (has_sum(total - n2, n1, n2))

Step 3: Combine the results.
We are happy if either of our two recursive calls returns true. So we return true if has_sum(total -
n1, n1 , n2) or has_sum(total - n2, n1 , n2) returns True.

Putting it all together

def has_sum(total, n1, n2):

 if total == n1 or total == n2:

 return True

 elif total < n1 and total < n2:

 return False

 return has_sum(total - n1, n1, n2) or has_sum(total - n2, n1, n2)

Put the orange text from the previous slide into code:

Tree Recursion #4
The next day, the printers break down even more!
Each time they are used, Printer A prints a random x
copies 50 ≤ x ≤ 60, and Printer B prints a random y
copies 130 ≤ y ≤ 140. The TAs also relax their
expectations: they are satisfied as long as they get at
least lower, but no more than upper, copies printed.
(More than upper copies is unacceptable because it
wastes too much paper.)

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies 50 ≤ x ≤
60, and Printer B prints a random y copies 130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as
they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes
too much paper.)

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies 50 ≤ x ≤
60, and Printer B prints a random y copies 130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as
they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes
too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we
could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper
function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper
from inside the sum_range definition with both possible_min and possible_max set to 0. We can always print 0 copies by
not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that
forces us to be in the range from lower and upper.

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies 50 ≤ x ≤
60, and Printer B prints a random y copies 130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as
they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes
too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we
could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper
function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper
from inside the sum_range definition with both possible_min and possible_max set to 0. We can always print 0 copies by
not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that
forces us to be in the range from lower and upper.

Step 1: Base case(s)
How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could
possibly print. By using a combination of printer A and printer B, we know for sure the number of copies we print is
between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than
upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to
reach lower, when possible_max is larger than upper it’s game over.

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies 50 ≤ x ≤
60, and Printer B prints a random y copies 130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as
they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes
too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we
could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper
function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper
from inside the sum_range definition with both possible_min and possible_max set to 0. We can always print 0 copies by
not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that
forces us to be in the range from lower and upper.

Step 1: Base case(s)
How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could
possibly print. By using a combination of printer A and printer B, we know for sure the number of copies we print is
between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than
upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to
reach lower, when possible_max is larger than upper it’s game over.

Step 2: Recursive call
We’re going to be calling our helper function recursively. At each step we can increment the possible_min by 50 or
by 130, depending on which printer we use. Similarly we can increment possible_max by 60 or 140.

The next day, the printers break down even more! Each time they are used, Printer A prints a random x copies 50 ≤ x ≤
60, and Printer B prints a random y copies 130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as
they get at least lower, but no more than upper, copies printed. (More than upper copies is unacceptable because it wastes
too much paper.)

We need to keep track of the smallest number of copies our printers could print and the largest number of copies we
could end up printing. Since we need to compare these two extremes to lower and upper, we should write a helper
function (call it sum_helper), that can keep track of the possible_min and possible_max. We can call sum_helper
from inside the sum_range definition with both possible_min and possible_max set to 0. We can always print 0 copies by
not using any printer. Then inside sum_range we will use recursion to see if we can find some combination of printers that
forces us to be in the range from lower and upper.

Step 1: Base case(s)
How do we know we are done? Remember that possible_min and possible_max bound the number of copies we could
possibly print. By using a combination of printer A and printer B, we know for sure the number of copies we print is
between possible_min and possible_max. How can we be sure that the printers will print more than lower and less than
upper? How are possible_min, possible_max and lower, upper related?
How do we know that we for sure failed in staying between lower and upper. While possible_min can keep getting bigger to
reach lower, when possible_max is larger than upper it’s game over.

Step 2: Recursive call
We’re going to be calling our helper function recursively. At each step we can increment the possible_min by 50 or
by 130, depending on which printer we use. Similarly we can increment possible_max by 60 or 140.

Step 3: Combining the results
Assume that sum_range works. What should we do to the results of our recursive call? We’re happy if either using the first
printer OR the second printer forces us to be inside [lower, upper].

def sum_range(lower, upper)
def sum_range(possible_min, possible_max):
 if lower <= possible_min and possible_max <= upper:
 return True
 if upper < possible_min:
 return False
 return sum_range(possible_min + 50, possible_max + 60) or

sum_range(possible_min + 130, possible_max + 140)
return sum_range(0, 0)

Putting it all together
Put the orange text from the previous slide into code:

