
Discussion 02
HOF, Environment Diagrams (for days)

6/28

1.2 (last part)

What will the following output?

def negate(f, x):
 return -f(x)
def square(n):
 return n * n
def double(n):
 return 2 * n
>>> negate(double, negate(square, -4))

Walking through how to execute function calls

Evaluate Operators and Operands

Evaluate the
operator

Evaluate the
operands

Evaluate the
operator

Evaluate the
operandsWe evaluated the operator, evaluated

the operands. We are now ready for
our first function call to negate. Note
that this function call comes before the
call to the negate on the outside of all
the parenthesis (gray)

f1: negate [P = G]
 f: square
 x: -4
 RV: -16

f2: square [P = G]
 x: -4
 RV: 16

-16
The function call
returned 16, so we
can replace the
complicated
looking operand
with the value 16

We have
defined the
function
with the
name
negate in
global

We have
defined the
function with
the name
double in
global

Execute the function call:

The rules for executing a function call are:
1. Evaluate the operator
2. Evaluate the operands
3. Execute the body of the function
Note that these rules can be interrupted. In this
example we were preparing to execute the first
negate, but were interrupted in the process of
evaluating it’s operands. Sometimes it is
necessary to complete another function call
before completing the one we initially started

square and -4 are
both primitive

>>> negate(double,)negate(square, -4)

Note: this is not a
fully complete
environment
diagram (there are
missing
components)

Execute the Function Call
Evaluate the

operator
Evaluate the

operands

Now that we know that values of the operands, we can
execute the outer most function call

f1: negate [P = G]
 f: double
 x: -16
 RV: 32

f2: double [P = G]
 x: -16
 RV: -32

-16

Execute the function call:

>>> negate(double,)

Solution: 32

What’s different with HOF?

t = “surprise!”
def outer(t):
 def inner():
 print(t)
 return inner
outer(“boo!”)()

t = “surprise!”
def inner():
 print(t)
def outer(t):
 return inner
outer(“boo!”)()

What’s different between the code on the left and the code on
the right? What will be printed when the code on the left is

executed? What about the code on the right?

t = “surprise!”
def outer(t):
 def inner():
 print(t)
 return inner
outer(“boo!”)()

t = “surprise!”
def inner():
 print(t)
def outer(t):
 return inner
outer(“boo!”)()

Global Frame

Draw environment diagrams to see what’s different

t: “surprise!”
outer: func outer(t) [P = G]

t: “boo!”
inner: func inner() [P = f1]
rv: inner

f1: outer [P = G]

f2: inner [P = f1]

Global Frame
t: “surprise!”
inner: func inner() [P = G]
outer: fun outer(t) [P = G]

t: “boo!”
rv: inner

f1: outer [P = G]

f2: inner [P = G]

boo! surprise!
All inner does is print(t).
Since t is not defined in
the local frame, where
does inner find t?Python prints: Python prints:

Environment Diagrams
Know the rules!

1. Def statements:
1. create a new function whose parent is the current frame
2. skip the body of the function
3. bind the function to it’s name in the current frame

2. Assignment statements:
1. evaluate the RHS
2. bind the value of the RHS to the name on the LHS
3. NOTE: names can only have one value per frame

3. Function calls:
1. evaluate the operator
2. evaluate the operands
3. execute the body of the function

1.5 #1
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(lambda x, y: x + y)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, mark where you were before so that you
know which line to go back to

Global Frame:

curry2
func curry2(h) [P = G]

make_adder
add_three

f1 curry2 [P = G]

h
f
RV:

func lambda (x, y) [P = G]

func f(x) [P = f1]

f2 f [P = f1]

x: 3
g func g(y) [P = f2]

RV:

f3 g [P = f2]
y: 2
RV: 5

function call

assignment

five: 5

function call

assignment

function call

assignment

function call

f4 lambda [P = G]

x: 3
y: 2

RV: 5

1.5 #2
n = 7

def f(x):

 n = 8

 return x + 1

def g(x):

 n = 9

 def h():

 return x + 1

 return h

def f(f, x):

 return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)

Global Frame:
n: 7
f func f(x) [P = G]

g func g(x) [P = G]

x

func f(f, x) [P = G]

f
x: 7

f1: f [P = G]

RV

function call

assignment

function call
assignment

x

func lambda(y) [P = G]

x: 14

f2: g [P = G]

h

f3: lambda [P = G]
y:

n: 9 func h() [P = f2]

RV

function call
RV: 15

f4: h [P =f2]
RV: 15

x:15

function call

Challenge Problem

1.5 #3
y = “y”

h = y

def y(y):

 h = “h”

 if y == h:

 return y + “i”

 y = lambda y: y(h)

 return lambda h: y(h)

y = y(y)(y)

Global Frame:

y: “y”

h: “y”
func y(y) [P = G]

x

f1: y [P = G]

y:
h: “h”

func lambda1(y) [P = f1]
x

func lambda2(h) [P = f1]RV

f2: lambda2 [P = f1]
h:

f3: lambda1 [P = f1]
y:

f3: y [P = G]

y: “h”

h: “h”

RV: “hi”

RV: “hi”

RV: “hi”

x
“hi”

func y “h”

assignment

x
“h”

We just completed the first y(y)
function call: now we know what the
operator is for the second function call

The return value of lambda1
is the result of calling y
(which is what we passed in)
on h. Since h is not defined in
this frame, we must look at
the parent frames

y is not defined here,
we must look for it in
the parent frames
h was passed in; in
this case h is the
function y (check f2)

