
Discussion 1
6/23

What did we cover?

How do we control what code is
executed?

How many times is it executed?

How do we access elements in a list?

How do we visualize code?

What did we cover?

How do we control what code is
executed?

How many times is it executed?

How do we access elements in a list?

How do we visualize code?

If statements

While loops

lst[0]
lst[1:3]

environment diagrams!

Control Structures

If Statements

Only execute the code that
corresponds to the first true
conditional

If none of the conditionals are true,
execute the else (if it exists)

What Would Python Do?
if True:
 print(“hi”)
elif True:
 print(“61A”)
else:
 print(“rocks!”)

if True:
 print(“hi”)
if True:
 print(“61A”)
else:
 print(“rocks!”)

hint: how does a sequence of if conditions behave differently from a sequence of elif’s after an if?

What Would Python Do?
if True:
 print(“hi”)
elif True:
 print(“61A”)
else:
 print(“rocks!”)

if True:
 print(“hi”)
if True:
 print(“61A”)
else:
 print(“rocks!”)

hi hi
61A

What Would Python Do?
if True:
 return “hi”
elif True:
 return “61A”
else:
 return “rocks!”

if True:
 return “hi”
if True:
 return “61”
else:
 return “rocks!”

hint: how does return behave differently from print?

What Would Python Do?
if True:
 return “hi”
elif True:
 return “61A”
else:
 return “rocks!”

if True:
 return “hi”
if True:
 return “61”
else:
 return “rocks!”

‘hi’ ‘hi’

1.3 #2
def handle_overflow(s1, s2):

“””

>>> handle_overflow(27, 15)

No overflow

>>> handle_overflow(35, 29)

1 spot left in Section 2

>>> handle_overflow(20, 32)

10 spots left in Section 1

>>> handle_overflow(35, 30)

No space left in either section

“””

1.3 #2
def handle_overflow(s1, s2):

“””

>>> handle_overflow(27, 15)

No overflow

>>> handle_overflow(35, 29)

1 spot left in Section 2

>>> handle_overflow(20, 32)

10 spots left in Section 1

>>> handle_overflow(35, 30)

No space left in either section

“””

What conditions do we have?

do
ct

es
t

hint: use doctests to figure out how the different arguments affect what the function does

1.3 #2
def handle_overflow(s1, s2):

“””

>>> handle_overflow(27, 15)

No overflow

>>> handle_overflow(35, 29)

1 spot left in Section 2

>>> handle_overflow(20, 32)

10 spots left in Section 1

>>> handle_overflow(35, 30)

No space left in either section

“””

What conditions do we have?
Look at the doctests to determine what
conditions produce different results

Both numbers under 30

First number (s1) larger than 30

Second number (s2) larger than 30

Both numbers larger than OR
EQUAL TO 30

do
ct

es
t

hint: use doctests to figure out how the different arguments affect what the function does

1.3 #2
def handle_overflow(s1, s2):

“””

>>> handle_overflow(27, 15)

No overflow

>>> handle_overflow(35, 29)

1 spot left in Section 2

>>> handle_overflow(20, 32)

10 spots left in Section 1

>>> handle_overflow(35, 30)

No space left in either section

“””

What do we do for each
condition?

(don’t worry about “spot” vs. “spots” yet)

do
ct

es
t

hint: use doctests to figure out what the different actions of the function should be

1.3 #2
def handle_overflow(s1, s2):

“””

>>> handle_overflow(27, 15)

No overflow

>>> handle_overflow(35, 29)

1 spot left in Section 2

>>> handle_overflow(20, 32)

10 spots left in Section 1

>>> handle_overflow(35, 30)

No space left in either section

“””

Both numbers under 30

First number (s1) larger than 30

Second number (s2) larger than 30

Both numbers larger than OR
EQUAL TO 30

do
ct

es
t

hint: use doctests to figure out what the different actions of the function should be

—> Print “No overflow”

—> Print “x spots left in Section s2”

—> Print “x spots left in Section s1”

—> Print “No space left in either section”

What do we do for each
condition?

(don’t worry about “spot” vs. “spots” yet)

1.3 #2

def handle_overflow(s1, s2):

 if s1 < 30 and s2 < 30:

 print(“No overflow”)

 elif s1 < 30:

 print(30 - s1, “spots left in Section 2”)

 elif s2 < 30:

 print(30 - s2, “spots left in Section 1”)

 else:

 print(“No space left in either section”)

Putting the results of the previous slide into code, we get:

1.3 #2

def handle_overflow(s1, s2):

 if s1 < 30 and s2 < 30:

 print(“No overflow”)

 elif s1 < 30:

 print(30 - s1, “spots left in Section 2”)

 elif s2 < 30:

 print(30 - s2, “spots left in Section 1”)

 else:

 print(“No space left in either section”)

Now let’s worry about “spot” vs. “spots”
Where in the code should we differentiate between

printing “spot” and “spots”?

1.3 #2

def handle_overflow(s1, s2):

 if s1 < 30 and s2 < 30:

 print(“No overflow”)

 elif s1 < 30:

 print(30 - s1, “spots left in Section 2”)

 elif s2 < 30:

 print(30 - s2, “spots left in Section 1”)

 else:

 print(“No space left in either section”)

Now let’s worry about “spot” vs. “spots”
Where in the code should we differentiate between

printing “spot” and “spots”?

So if there is
only 1 spot
left, we
should print
“spot”
Otherwise we
print “spots”

1.3 #2
def handle_overflow(s1, s2):

 if s1 < 30 and s2 < 30:

 print(“No overflow”)

 elif s1 < 30:

 if 30 - s1 == 1:

 print(30 - s1, “spot left in Section 2”)

 else:

 print(30 - s1, “spots left in Section 2”)

 elif s2 < 30:

 if 30 - s2 == 1:

 print(30 - s1, “spot left in Section 1”)

 else:

 print(30 - s1, “spots left in Section 1”)

 else:

 print(“No space left in either section”)

1.5 #2
Fill in the is_prime function, which returns True if n is a prime

number and False otherwise.

Hint: use the % operator

def is_prime(n):

1.5 #2
Fill in the is_prime function, which returns True if n is a prime

number and False otherwise.

Hint: use the % operator

def is_prime(n): Wait! Before you even think about writing
code, write down what you know!

1.5 #2
Fill in the is_prime function, which returns True if n is a prime

number and False otherwise.

Hint: use the % operator

def is_prime(n): Wait! Before you start writing code, write
down what you know!

What are the arguments?
What do we want to return?
What kind of programming constructs
that we learned can you use to solve
this problem?

hint: before writing code, make sure you understood the problem

1.5 #2
We want to determine whether or not n is prime. A
number is prime if its only divisors are 1 and itself.

So if dividing n by any number smaller than it produces
a non zero remainder, then n is definitely prime.

How can we check that all numbers smaller than n will
produce a non zero remainder?

How do we return False if we get 0 as a remainder
somewhere?

How do we return True otherwise?
hint: if you can answer all of these questions, you are basically done with the problem

1.5 #2
Formalizing the answers the questions from the
previous slide:
def is_prime(n):
 if n == 1:
 return False
 k = 2
 while k < n:
 if n % k == 0:
 return True
 k += 1
 return True

1.5 #2

Check yourself:

Why do we need the first if statement? What will
happen if we start the while loop with k = 1?

Why is it ok for us to just return True after the
while loop? In other words: can we ever return
True on accident when n is actually prime?

1.6 #1
Implement fizzbuzz(n) which prints the numbers from 1 to n
inclusive. For numbers divisible by 3, print “fizz”. For numbers
divisible by 5 print “buzz”. For numbers divisible by both print
“fizzbuzz”.

def fizzbuzz(n):

1.6 #1
Implement fizzbuzz(n) which prints the numbers from 1 to n
inclusive. For numbers divisible by 3, print “fizz”. For numbers
divisible by 5 print “buzz”. For numbers divisible by both print
“fizzbuzz”.

def fizzbuzz(n): Wait! Before you start writing code, write
down what you know!

What are the arguments?
What do we want to return?
What kind of programming constructs
that we learned can you use to solve
this problem?

1.6 #1
def fizzbuzz(n):

i = 1
while i <= n:

We need to print something for each
number from 1 to n
So we should have a while loop!

1.6 #1
def fizzbuzz(n):

i = 1
while i <= n:

if i % 3 == 0 and i % 5 == 0:

print(‘fizzbuzz’)

elif i % 3 == 0:

print(‘fizz’)

elif i % 5 == 0:

print(‘buzz’)

else:

We need to print something for each
number from 1 to n
So we should have a while loop!

Use the modulus
operator to check if
a number is
divisible by 3, 5, or
both.
Why does the
order of the if
statements matter
here?

1.6 #1
def fizzbuzz(n):

i = 1
while i <= n:

if i % 3 == 0 and i % 5 == 0:

print(‘fizzbuzz’)

elif i % 3 == 0:

print(‘fizz’)

elif i % 5 == 0:

print(‘buzz’)

else:

print(i)

We need to print something for each
number from 1 to n
So we should have a while loop!

Use the modulus
operator to check if
a number is
divisible by 3, 5, or
both.
Why does the
order of the if
statements matter
here?

If none of the
conditions are
met, just print
out the number

1.6 #1
def fizzbuzz(n):

i = 1
while i <= n:

if i % 3 == 0 and i % 5 == 0:

print(‘fizzbuzz’)

elif i % 3 == 0:

print(‘fizz’)

elif i % 5 == 0:

print(‘buzz’)

else:

print(i)

i += 1

We need to print something for each
number from 1 to n
So we should have a while loop!

Use the modulus
operator to check if
a number is
divisible by 3, 5, or
both.
Why does the
order of the if
statements matter
here?

If none of the
conditions are
met, just print
out the number

Don’t forget to increment i each time!

Lists and For
Statements

>>> pizza = [1, 2, 3, 4]

>>> pizza[1:2]

2.1 Example

2.1 Example
>>> pizza = [1, 2, 3, 4]

>>> pizza[1:2] Think of this as getting the elements of
pizza that are from index 1 to index 2,
not including index 2 — [1, 2)

[2] Note: this returns the list [2], not just
the number 2

2.1 Example
>>> pizza = [1, 2, 3, 4]

>>> pizza[1:2] Think of this as getting the elements of
pizza that are from index 1 to index 2,
not including index 2 — [1, 2)

[2] Note: this returns the list [2], not just
the number 2

>>> pizza[1:]

2.1 Example
>>> pizza = [1, 2, 3, 4]

>>> pizza[1:2] Think of this as getting the elements of
pizza that are from index 1 to index 2,
not including index 2 — [1, 2)

[2] Note: this returns the list [2], not just
the number 2

>>> pizza[1:]
[2, 3, 4]

Not specifying the last index means “till
the end of the list”

2.1 Example
>>> pizza = [1, 2, 3, 4]

>>> pizza[1:2] Think of this as getting the elements of
pizza that are from index 1 to index 2,
not including index 2 — [1, 2)

[2] Note: this returns the list [2], not just
the number 2

>>> pizza[-2:3]

>>> pizza[1:]
[2, 3, 4]

Not specifying the last index means “till
the end of the list”

2.1 Example
>>> pizza = [1, 2, 3, 4]

>>> pizza[1:2] Think of this as getting the elements of
pizza that are from index 1 to index 2,
not including index 2 — [1, 2)

[2] Note: this returns the list [2], not just
the number 2

>>> pizza[-2:3] [1, 2, 3, 4]
0 1 2 3

0 -3 -2 -1

start end

[3]

>>> pizza[1:]
[2, 3, 4]

Find the start and end indices and
return everything between them except
for the last element

Not specifying the last index means “till
the end of the list”

Environment
Diagrams

There are 3 types of things you
should be able to draw out

There are 3 types of things you
should be able to draw out

bob = 3

Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature and parent

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature and parent

rob: func rob(bob) [P=G]

Where is this
function being
defined? What
is your current
frame?

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature and parent

rob: func rob(bob) [P=G]

bob = rob What will this
ASSIGNMENT do?

Where is this
function being
defined? What
is your current
frame?

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature + parent

rob: func rob(bob) [P=G]

bob = rob What will this
ASSIGNMENT do?

Where is this
function being
defined? What
is your current
frame?

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature + parent

rob: func rob(bob) [P=G]

bob = rob What will this
ASSIGNMENT do?

bob = bob(bob)
FUNCTION CALLS
1. Evaluate the operator and operand
2. Open a new frame
 Write f#: function name [P = ???]
 (optional; update your current frame in CF:)
 Assign the parameters
3. Execute the body of the function

Where is this
function being
defined? What
is your current
frame?

bob points to the
function rob in the
global frame, so we call
the rob function

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G, f1
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature + parent

rob: func rob(bob) [P=G]

bob = rob What will this
ASSIGNMENT do?

bob = bob(bob)
FUNCTION CALLS
1. Evaluate the operator and operand
2. Open a new frame
 Write f#: function name [P = ???]
 (optional; update your current frame in CF:)
 Assign the parameters
3. Execute the body of the function

f1: rob [P=G]

Where is this
function being
defined? What
is your current
frame?

bob points to the
function rob in the
global frame, so we call
the rob function

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G, f1
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature + parent

rob: func rob(bob) [P=G]

bob = rob What will this
ASSIGNMENT do?

bob = bob(bob)
bob:

f1: rob [P=G]

Where is this
function being
defined? What
is your current
frame?

bob points to the
function rob in the
global frame, so we call
the rob function

FUNCTION CALLS
1. Evaluate the operator and operand
2. Open a new frame
 Write f#: function name [P = ???]
 (optional; update your current frame in CF:)
 Assign the parameters
3. Execute the body of the function

There are 3 types of things you
should be able to draw out

bob = 3

bob: 3 ‘mob’
Global Frame:

ASSIGNMENT
1. Evaluate the RHS
2. Write the name and

value in the current
frame

CF: G, f1
I like to keep
track of the
current frame
up here

def rob(bob):
 a = 2
 return ‘mob’

DEF STATEMENTS
1. Write the function

name in the current
frame

2. Point it to the
function object
which we represent
by the function
signature + parent

rob: func rob(bob) [P=G]

bob = rob What will this
ASSIGNMENT do?

bob = bob(bob)
bob:

f1: rob [P=G]

a: 2

RV: ‘mob’

Where is this
function being
defined? What
is your current
frame?

bob points to the
function rob in the
global frame, so we call
the rob function

FUNCTION CALLS
1. Evaluate the operator and operand
2. Open a new frame
 Write f#: function name [P = ???]
 (optional; update your current frame in CF:)
 Assign the parameters
3. Execute the body of the function

cross out a
frame when
you return

Diagram Rules
ASSIGNMENT
1.Evaluate the RHS
2.Write the name and

value in the current
frame

DEF STATEMENTS
1.Write the function name in

the current frame
2.Point it to the function

object which we represent by
the function signature +
parent

FUNCTION CALLS
1.Evaluate the operator and

operand
2.Open a new frame
 Write f#: function name
[[P = ???]
 (optional; update your
c current frame in CF:)
 Assign the parameters
3.Execute the body of the

function

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

Global Frame:

CF: G

a: 1
b func b(b) [P=G]

Just executed
the first two
lines

This is an
assignment. To
find the value
of the RHS we
need to do a
function call.
Before opening a new
frame, make sure you know
what the values of the
operator and operands are
(here a is 1 since that is it’s
value in the global frame)

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

Global Frame:
a: 1
b func b(b) [P=G]

f1: b [P=G]
b: 1

CF: G, f1

To evaluate the body of the
function, we need to do a +
b. Since there is no a
defined in f1 (the current
frame) we must look for a
in it’s parent Note: The parameter is

always just copied from the
function signature up here.
Even though we pass in a,
we do not write a as the
name of the parameter.

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

Global Frame:
a: 1
b func b(b) [P=G]

f1: b [P=G]
b: 1

CF: G, f1

To evaluate the body of the
function, we need to do a +
b. Since there is no a
defined in f1 (the current
frame) we must look for a
in it’s parent

RV: 2 (a + b = 1 + 1 = 2)

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

f1: b [P=G]
b: 1
RV: 2 (a + b = 1 + 1 = 2)

Now we are finally ready to
do the assignment. We
know that b(a) evaluates to
2 (since this is the return
value of f1) and we can
reassign a to be 2 in the
global frame

Global Frame:
a: 1, 2
b func b(b) [P=G]

CF: G, f1

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

Global Frame:
a: 1, 2
b func b(b) [P=G]

f1: b [P=G]
b: 1
RV: 2

Another
assignment and
function call

CF: G, f1

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

Global Frame:
a: 1, 2, 4
b func b(b) [P=G]

f1: b [P=G]
b: 1
RV: 2

f2: b [P=G]
b: 2
RV: 4

Notice that b is
2 here now,
since the global
a has changed (a + b = 2 + 2 = 4)

CF: G, f1, f2

3.1 #1
a = 1
def b(b):
 return a + b
a = b(a)
a = b(a)

tip: take it a line at a time

Global Frame:
a: 1, 2, 4
b func b(b) [P=G]

f1: b [P=G]
b: 1
RV: 2

f2: b [P=G]
b: 2
RV: 4

CF: G, f1, f2

Make sure that
every frame has
a return value!

3.1 #2

tip: when you start doing a function call, remember where you were before

def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

3.1 #2

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2

CF: G

func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

func add (…)
add

Parent is the current frame

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

func add (…)
add

f1 curry2 [P = G]
h

function call

Recall function calls:
1. Evaluate operator

and operands,
2. Create a new frame
3. Assign the

parameters in the
new frame

CF: G, f1

assign the parameters

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

func add (…)
add

f1 curry2 [P = G]
h

function call

Recall function calls:
1. Evaluate operator

and operands,
2. Create a new frame
3. Assign the

parameters in the
new frame

Inside curry2
we define a
new function,
f.
What is it’s
parent?

func f(x) [P=f1]f

CF: G, f1

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2

CF: G, f1

func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

f1 curry2 [P = G]
h
f

func add (…)

func f(x) [P=f1]

add

function call
now we return the function we

just defined

RV:
func f(x) []func f(x) [

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

add

assignment
function call

finally assign the value that
curry2 returned to make_adder

CF: G, f1

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3

add

function call

assign the parameters

CF: G, f1, f2

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]

addInside f we
define a new
function, g.
What is it’s
parent?

function call

CF: G, f1, f2

CF: G, f1, f23.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]

add

function call

func g(y) [P = f2]
RV:

now we return the function we
just defined

3.1 #2 CF: G, f1, f2

def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]

add

function call

func g(y) [P = f2]
RV:

finally, assign the return value
to add_three

add_three

func g(y) [P = f2]

assignment

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder
add_three

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]
RV:

f3 g [P = f2]
y: 2

add

CF: G, f1

function call

assign the parameters

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder
add_three

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]
RV:

f3 g [P = f2]
y: 2

add

CF: G, f1

function call

Here we call
h(x, y) but we
do not draw a
new frame
for it. Why?

What are x
and y?

def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

3.1 #2

tip: when you start doing a function call, remember where you were before

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder
add_three

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]
RV:

f3 g [P = f2]
y: 2
RV: 5

add

CF: G, f1

There is no variable named x in f3, so
we must look at its parent. It’s parent
has x:3. So we do add(3, 2) = 5.

return the
result of
add(3, 2)

function call

3.1 #2
def curry2(h):

 def f(x):

 def g(y):

 return h(x, y)

 return g

 return f

make_adder = curry2(add)

add_three = make_adder(3)

five = add_three(2)

tip: when you start doing a function call, mark where you were before so that you know which line to go back to

Global Frame:

curry2 func curry2(h) [P = G]

I li
ke

 to
 draw

 a
lin

e

here
 so

 th
at

I d
on’t

acc
iden

tal
ly

sta
rt

eva
luati

ng t
he b

ody

of th
e d

ef
rig

ht

aw
ay

make_adder
add_three

f1 curry2 [P = G]
h
f
RV:

func add (…)

func f(x) [P = f1]

f2 f [P = f1]
x: 3
g func g(y) [P = f2]
RV:

f3 g [P = f2]
y: 2
RV: 5

add

CF: G, f1

return the
result of
add(3, 2)

function call

assignment

five: 5

