Discussion 1

6/23

What did we cover?

* How do we control what code 1s
executed?

* How many times 1s it executed?
* How do we access elements 1n a list?

* How do we visualize code?

What did we cover?

* How do we control what code 18 Ifstatements
executed?
* How many times 1s it executed? While loops

Ist|0

%* How do we access elements 1n a List? lst/1:3

* How do we visualize code? cnvironment diagrams!

Control Structures

If Statements

* Only execute the code that
corresponds to the first true
conditional

* [t none of the conditionals are true,
execute the else (if 1t exists)

What Would Python Do?

1T i True: Ui Mruel:

EEEnE i ha) orom bty
elif True: e

B En i S e ST A @ Falalialiast b [SH1ar D)
else: else:

i et 6 i 12 01 fEx (AN BEUG el SEegul 2

hint: how does a sequence of if conditions behave differently from a sequence of elif’s after an if?

What Would Python Do?

i enknd L aaB T 2 1f True:

EEEnE i ha) orom bty
elif True: 1 = Truels

B En i S e ST A @ Falalialiast b [SH1ar D)
else: else:

B4 ST ¢ G oS b R UR e S o s paa prInE Y ree e
hi hi

61A

What Would Python Do?

i enknd L aaB T 2
return

elif True:
return

else:
return

\\hj— 44

\\ 6 :I_A//

Yroclegh

Ui Mruel:
return

e
return

else:
return

\\hi 44

\\61//

Wroclafd

hint: how does return behave differently from print?

What Would Python Do?

i e o B RS et e

AR SR (5 e el (B et urnhs
TR bl N A e R A A = O

e e e a ke Aeual s Y RYAYH sA[=iEa B | G R h ha o e
else elses

retira iy rocksgt?” Hneturn Hrocleatit

e e e b e Lo —aae AU —— . bih ek o el e el | e e Ld i e el s —— e —

\hil ' \hil

1o 7/

def handle overflow(sl, s2):

>>> handle overflow(27, 15)
No overflow

>>> handle overflow(35, 29)
1 spot left in Section 2
>>> handle overflow (20, 32)
10 spots left in Section 1
>>> handle overflow(35, 30)

No space left in either section

4 mnrn

1o 7/

W hat conditions do we have?

def handle overflow(sl, s2):

4 mnrn

a2izhandle | overrlow (27, 15)
No overflow
>>> handle overflow (35, 29)

1 spot left in Section 2

doctest

>>> handle overflow (20, 32)
10 spots left in Section 1
>>> handle overflow (35, 30)

No space left in either section

4 mnrn

hint: use doctests to figure out how the different arguments affect what the function does

1o 7/

W hat conditions do we have?

L.ook at the doctests to determine what
conditions produce different results

def handle overflow(sl, s2):

4 mnrn

>>> handle overflow|(27, 15)

Both numbers under 30

No overflow

>>> handle overflow|(35, 29)

First ber (s1)1 than 30
1l spoti//left in Section 2 irst number (s1) larger than

doctest

>>> handle overflow|(20, 32)

Second number (s2) larger than 50
10 spots left in Section 1

>>> handle_overflow|(35, 30) Both numbers larger than OR
EQUAL TO 30

No space left in either section

4 mnrn

hint: use doctests to figure out how the different arguments affect what the function does

1o 7/

What do we do for each

condition?

(don’t worry about “spot” vs. “spots” yet)

def handle overflow(sl, s2):

4 mnrn

a2izhandle | overrlow (27, 15)
No overflow
>>> handle overflow (35, 29)

1 spot left in Section 2

doctest

>>> handle overflow (20, 32)
10 spots left in Section 1
>>> handle overflow (35, 30)

No space left in either section

4 mnrn

hint: use doctests to figure out what the different actions of the function should be

1o 7/

def handle overflow(sl, s2):

4 mnrn

x>>1 handle |overtlow (27, 15)

No overflow

>>> handle overflow (35, 29)

1 spot left in Section 2

doctest

>>> handle overflow(20, 32)

10 spots left in Section 1

>>> handle overflow(35, 30)

No space left in either section

What do we do for each

condition?

(don’t worry about “spot” vs. “spots” yet)

Both numbers under 30
— > Print “No overflow”

First number (s1) larger than 30
—> Print “x spots left in Section s2”

Second number (s2) larger than 50
— > Print “x spots left in Section s1”

Both numbers larger than OR
EQUAL TO 30

4 mnrn

hint: use doctests to figure out what the different actions of the function should be

> Print "No space left in either section”

1o 7/

Putting the results of the previous slide into code, we get:

def handle overflow(sl, s2):
ks 30k -and s+ <310
print (“No overflow”)
elif s1 < 30:
print(30/ - sl “spots left in Section|2")
elif s2 < 30:
print (30 - s2, “spots left in Section 1)
=ilinds L

print(“No space left in-either 'section”)

1o 7/

Now let’s worry about “spot” vs. “spots”

Where in the code should we differentiate between
printing “spot” and “spots™?

def handle overflow(sl, s2):
sl i< -30- land s <1303
print (“No overflow”)
elif sl < 30:
print (30| - sl|, “spots left in Section|2")
elif s2 < 30:
print (30 =52 “sppots left in Secgtion|1™)
else:

print(“No space left in either section”)

1o 7/

Now let’s worry about “spot” vs. “spots”
Where 1n the code should we differentiate between
printing “spot” and “spots™?
def handle overflow(sl, s2):

LS L300 Tand s <1310 s

ST ARPTET print(“No overflow”)
only 1 spot
left, we elif sl < 30:
should print
spot” print (30 - sl, “spots left in Section 2")
Ot.herwme we
LT ELE S S PR BRSNS R
print(30="52| “sppts: Left an iSection L")

else:

print(“No space left in either section”)

13#2

def handle overflow(sl, s2)
ifiisl < 130 and s2 (< 303

print(“No joverflow”)

eI 810
LELSO =18l ==
prINECI0- —Hel i spotil e feinitseatrontiEai)
B
PHLITECE O s Tienh Tt s DOt BT e firin] iiES S CE G216
elif s2 < 30
if 30 - s2 == 1:
prEn S0kt s potrhe Tt Ser ot Eiets
elses

PHIDE(IO =1 5L, [SPOES[I1efE 1N SECEAOR L)

else:

printCiNoispace left irnrerther section|)

1.5 7/

Fill in the is_prime function, which returns True if n i1s a prime
number and False otherwise.
Hint: use the % operator

def i1s prime(n):

1.5 7/

Fill in the is_prime function, which returns True if n i1s a prime
number and False otherwise.

Hint: use the % operator

def—ds—medmelar. Wait! Before you even think about writing

ne code, write down what you know!

1.5 7/

Fill in the is_prime function, which returns True if n i1s a prime
number and False otherwise.

Hint: use the % operator

ot do seomdman it Wait! Before you start writing code, write

ne down what you know!

* What are the arguments?

* What do we want to return’

* What kind of programming construects
that we learned can you use to solve
this problem?

hint: before writing code, make sure you understood the problem

1.5 7/

We want to determine whether or not n is prime. A
number is prime if its only divisors are 1 and itself.

So if dividing n by any number smaller than it produces
a non zero remainder, then n 1s definitely prime.

How can we check that all numbers smaller than n will
produce a non zero remainder?

How do we return False if we get 0 as a remainder
somewhere?

How do we return True otherwise?

hint: if you can answer all of these questions, you are basically done with the problem

1.5 7/

Formalizing the answers the questions from the
previous slide:
def 1s prime(n):
it n ==
return False
ki=
while k < n:
1f n & k ==
e Eurn-hege
ki=117
return . True

1.5 7/

Check yourself:

Why do we need the first if statement? What will
happen if we start the while loop with k = 17

Why is it ok for us to just return lTrue after the
while loop? In other words: can we ever return
1True on aceident when n 1s actually prime?

1.6 #1

Implement £izzbuzz (n) which prints the numbers from 1 to n
inclusive. For numbers divisible by 3, print “fizz". For numbers

divisible by 5 print “buzz”. For numbers divisible by both print

“fizzbuzz”.

def fizzbuzz(n):

1.6 #1

Implement £izzbuzz (n) which prints the numbers from 1 to n
inclusive. For numbers divisible by 3, print “fizz". For numbers

divisible by 5 print “buzz”. For numbers divisible by both print

“fizzbuzz”.

-éé-?ﬁ.-&&bﬂ-&&(-ﬁ-)-&- Wait! Before you start writing code, write

down what you know!

* What are the arguments?

* What do we want to return?

* What kind of programming construects
that we learned can you use to solve
this problem?

1.6 #1

def flizzbuzz(n):

G . | We need to print something for each
number from 1 to n

while i <= n¢: | Sowe should have a while loop!

1.6 #1

detiiflizzbuzzi(n') s

G . | We need to print something for each
number from 1 to n

while i <= n¢: | Sowe should have a while loop!

if 1 $ 3 ==0and i &5 == 0:

Use the modulus
operator to check if

pranEOiEnzzbueait)
3

a number 1s ellf =BT = —— i) VB
divisible by 3, 5, or

both. : U |
Why does the prlnt (fizz)

order of the if
statements matter

iz

printiihbuazze)

else:

1.6 #1

detiiflizzbuzzi(n') s

G . | We need to print something for each
number from 1 to n

while i <= n¢: | Sowe should have a while loop!

if 1 $ 3 == 0 and 1 % 5 == 0:
Use the modulus prlnt(‘fizzbuzz’)
operator to check if _ . 1
a number is = I BN EEEY SE D) RN {118
divisible by 3, 5, or
both. : U |
Why does the prlnt(fizz)
order of the if =
?‘teagg.gnents matter Telif i & 5 == 0.
print Ghbazizit)
If none of the [else:
conditions are
met, just print - .
oul tﬂe nul?’nber 1 prlnt (3=)

1.6 #1

detiiflizzbuzzi(n') s

G . | We need to print something for each
number from 1 to n

while i <= n¢: | Sowe should have a while loop!

if 1 $ 3 == 0 and 1 % 5 == 0:
Use the modulus prlnt(‘fizzbuzz’)
operator to check if il : 1
a number 1s S B I SRR BN DR, A= T
divisible by 3, 5, or
both. : U |
Why does the prlnt(fizz)
order of the if =
itg;ggnents maltter Telif 1 & 5 == (0
prant hbaz 2z
If none of the [else:
conditions are
met, just print . -
oul tlf{e nul?fnber 1 prlnt (3=)

JisieRgE=a]; ‘ Don’t forget to increment 1 each time!

l.ists and For
Statements

2.1 Example

== naizza = 1.7 2,1 3;14]

>>> pilzzal[l:2]

2.1 Example

== naizza = 1.7 2,1 3;14]

Think of this as getting the elements of

>>> pizza[]_ e 2] < pizza that are from index 1 to index 2,

not including index 2 — [1, 2)

[2 Note: this returns the list [2], not just
the number 2

2.1 Example

== naizza = 1.7 2,1 3;14]

Think of this as getting the elements of

o Prezallize] o iz that o from fdon) g e
¥ N
[2]

Note: this returns the list [2], not just
the number 2

=>>>lplzzall:]

2.1 Example

== naizza = 1.7 2,1 3;14]

Think of this as getting the elements of

>>> pizza[]_ e 2] < pizza that are from index 1 to index 2,

not including index 2 — [1, 2)

[2 Note: this returns the list [2], not just
the number 2

- L Not specifving the last index means “till
=Bl przzal 1 el] wr i s thense

[2, 3, 4]

2.1 Example

== naizza = 1.7 2,1 3;14]

Think of this as getting the elements of

>>> pizza[]_ e 2] < pizza that are from index 1 to index 2,

not including index 2 — [1, 2)

[2 Note: this returns the list [2], not just
the number 2

- L Not specifving the last index means “till
=Bl przzal 1 el] wr i s thense

[2, 3, 4]

>>> pilzza[-2:3]

2.1 Example

== naizza = 1.7 2,1 3;14]

Think of this as getting the elements of

>>> pizza[]_ e 2] < pizza that are from index 1 to index 2,

not including index 2 — [1, 2)

[2 Note: this returns the list [2], not just
the number 2

- L Not specifving the last index means “till
=Bl przzal 1 el] wr i s thense

[2, 3, 4]

start end
, =
>>> pizza[-2:3] [1, 2, 3, 4]

[3]

Find the start and end indices and
return everything between them except
for the last element

Environment
Diagrams

There are 3 types of things you
should be able to draw out

There are 3 types of things you

should be able to draw out I like o keep
ASSIGNMENT Efﬁiﬁ{ tfllfgm—>e GG
1. Evaluate the RHS
bOb == 3 2. Write the name and up here

alue 1n the current
rame

Global Frame:

There are 3 types of things you

should be able to draw out I like o keep

ASSIGNMENT track of tfhe = ST Bine
1. Evaluate the RHS Curﬁent rame
bob = 3 2. Write the name and up here

alue 1in the current
rame

Global Frame:
bob: 3

There are 3 types of things you

should be able to draw out

ASSIGNMENT

1. Evaluate the RHS
bOb = 3 2. Write the name and

alue 1in the current
rame

DEF STATEMENTS
1. Write the function

def r0b<b0b>; name in the current
frame
o s D 2. Point it to the

function object

return ‘mob’ which we represent
by the function

signature and parent

I like to keep
track of the L3 CF G

current frame

up here

Global Frame:
bob: 3

There are 3 types of things you

should be able to draw out

ASSIGNMENT

1. Evaluate the RHS
bOb = 3 2. Write the name and

alue 1in the current
rame

DEF STATEMENTS
1. Write the function

def r0b<b0b>; name in the current
frame
o s D 2. Point it to the

function object

return ‘mob’ which we represent
by the function

signature and parent

I like to keep
track of the L3 CF G

current frame

up here
Global Frame: Where s (his
 §
bob: 3 defined? What

1s your current
frame?

rob: —— func rob(bob) [P=G]

There are 3 types of things you

should be able to draw out

ASSIGNMENT

1. Evaluate the RHS
bOb = 3 2. Write the name and

alue 1in the current
rame

DEF STATEMENTS
1. Write the function

def r0b<b0b>; name in the current
frame
o s D 2. Point it to the

function object

return ‘mob’ which we represent
by the function

signature and parent

What will this
bob = rob ASSIGNMENT do?

I like to keep
track of the L3 CF G

current frame

up here
Global Frame: Where s (his
 §
bob: 3 defined? What

1s your current
frame?

rob: —— func rob(bob) [P=G]

There are 3 types of things you
should be able to draw out

ASSIGNMENT

1. Evaluate the RHS
bOb = 3 2. Write the name and

value 1n the current
frame

DEF STATEMENTS
1. Write the function

def r0b<b0b>: name 1n the current
frame
o s D 2. Point 1t to the

function object

return ‘mob’ which we represent
by the function

signature + parent

What will this
bob = rob ASSIGNMENT do?

I like to keep
track of the L3 CF G

current frame

up here
GlOb al Fl‘amel Where is this
it g
bOb X %;y(ﬁ;l; (.3111‘1‘61‘?1’(
rame;
rob: func rob(bob) [P=G]

There are 3 types of things you

should be able to draw out I like o keep

ASSIGNMENT track 0{ tfhe — CF: G
1. Evaluate the RIS EREstr st S
bob = 3 2. Write the name and P
value in the current
frame
DEF STATEMENTS
1. Write the function GlOb al Fl‘amel Where is this
def I’Ob(b ()b>: name in the current SU%CU%{; {3)v€}111§
frame bOb X isey(ﬁ;r (.3111‘1‘61‘,?1’(
P ang, 2. Point it to the frame?
: : fu}rll.ciiilon object
which we represent ; —+
return ‘mob R rob: func rob(bob) [P=G]
81gnature + parent

What will this
bob = rob ASSIGNMENT do?

bob points to the
function rob 1n the

bob = b0b<b0b> lobal frame, so we call

FUNCTION CALLS the rob function

1. Evaluate the operator and operand

2. Open a new frame
Write {#: function name [P = ???]
(optional; update your current frame in CI:)
Assign the parameters

3. Execute the body of the function

There are 3 types of things you
should be able to draw out

I like to keep

ASSIGNMENT trackiot Lt (i H S0 T
1. Evaluate the RHS gurﬁee?; TALHE
bOb = 3 2. Write the name and P
value in the current
frame

DEF STATEMENTS

1. Write the function GlOb al Fl‘amel Where is this
def I’()b(b ()b>: name in the current function being
frame bob: X et
P ang, 2. Point it to the frame?
: : fu}rll.ciiilon object
which we represent ; —+
return ‘mob by the A rob: L func rob(bob) [P=G]

signature + parent

Whht will thi
bob = rob ASSIENMENT do? f1: rob [P=G]

bob points to the
function rob 1n the

bob = b0b<b0b> lobal frame, so we call

FUNCTION CALLS the rob function

1. Evaluate the operator and operand
2. Open a new frame

Write {#: function name [P = ???]

(optional; update your current frame in CI:)
Assign the parameters
3. Execute the body of the function

There are 3 types of things you

should be able to draw out I like o keep

ASSIGNMENT rackion thes ol H oG]
1. Evaluate the RHS ﬁur#;}e R
bOb = 3 2. Write the name and P
value 1n the current
frame

DEF STATEMENTS

1. Write the function GlOb al Fl‘amel Where is this
def I’Ob(b ()b>: name in the current : 5%%23%% {J)velﬂ?
frame t bOb 2 X 1S your current
P ang, 2. Point it to the frame’
: : fu}rll.ciillon object
which we represent ; —+
return ‘mob R rob: L func rob(bob) [P=G]
signature + parent 4
|
What will thi
bob = rob ASSIGNMENT do? f1: rob [P=G]
bob points to the bob:

function rob 1n the

bob = b0b<b0b> lobal frame, so we call

FUNCTION CALLS the rob function

1. Evaluate the operator and operand
2. Open a new frame

Write {#: function name [P = ???]

(optional; update your current frame in CI:)
Assign the parameters
3. Execute the body of the function

There are 3 types of things you

should be able to draw out I like o keep

cross out a

ASSIGNMENT track of the. —— (G} G, M frame when
1. Evaluate the RIS plEnCll you return
bob =3 2. Write the name and R
value 1n the current
frame

DEF STATEMENTS

AP ny y N 1. Write the hfunction Global Frame: }Nhere is bth_is
el ro ob name in the current unction being
< > frame bob: X ‘mob’ iis?éﬁrda}yr}éitt
P ang, 2. Point it to the frame’
: : fu}rll.ciillon object
which we represent ; .
return ‘mob R rob: func rob(bob) [P=G]
signature + parent 4
/
What will this
bob = rob ASSIGNMENT do? f1: rob |P=G
bob points to the bob:

function rob 1n the

bob = b0b<b0b> lobal frame, so we call

a: 2
lfUE Cr{I ON % ALLS ‘(ti e rob ﬁ;nctlon
¢ valuate the operator and operan
2. Open a new frgme 4 RV ‘mob’

Write {#: function name [P = ???]
(optional; update your current frame in CI:)
Assign the parameters

3. Execute the body of the function

Diagram Rules

ASSIGNMENT FUNCTION CALLS
1. Evaluate the RHS 1. Evaluate the operator and
] operand
2. Write the name and
value 1n the current 2.Open a new frame
frame Write {7: function name
Pr=niy]
DEF STATEMENTS (optional; update %our
1. Write the function name in current frame in CE:)
the current frame Assign the parameters
2. Point it to the function 3. Execute the body of the
object which we represent by function

thée function signature +
parent

a:
def

I

i

b(b):

return @ +|b
b(a)

b(a)

3.1 #1

tip: take it a line at a time

Just executed
the first two

lines

- a =
- def

I

1

b(b):

3.1 #1

GRS G

Global Frame:

return a + b a: 1

b (a)<—This 1S an b

b(a)

» func b(b) [P=G]

assignment. lo
find the value
of the RHS we
need to do a
function call.

Before opening a new
frame, make sure you know
what the values of the
operator and operands are
(here a is 1 since that is it’s
value in the global frame)

tip: take it a line at a time

1

b(b):

3.1 #1

return a + b

b(a)
b(a)

A

To evaluate the body of the
function, we need to do a +
b. Since there is no a
defined in f1 (the current
frame) we must look for a
in it’s parent

CFE: G, {1

Global Frame:

Sy
b

» func b

P

G]

f il [P=G]
b:1

i

\ Note: The parameter 1s

always Just copied from the
function signature up here.
Even though we pass in a,

we do not write a as the

name of the parameter.

tip: take it a line at a time

i
b(b):

3.1 #1

return a + b

b(a)
b(a)

A

To evaluate the body of the
function, we need to do a +
b. Since there is no a
defined in f1 (the current
frame) we must look for a
in it’s parent

CEF: G, K

Global Frame:
Sy
b

» func b(b) [P=G]

f il [P=G]
Juid

RV:2 a+b=1+1-2)

tip: take it a line at a time

i

b(b):

return @ +|b
b(a)

b(a)

Now we are finally ready to

do the assignment. We
know that b(a) evaluates to
® 2 (since this 1s the return

value of f1) and we can
reassign a to be 2 in the

global frame

CF: G, H /

Global Frame;

b » func b(b) [P=G]

f il [P=G]
Juid
RVE2 @i bEl14D

tip: take it a line at a time

3.1 #1

» func b(b) [P=G]

i CF: G, &
b(b): Global Frame:
return a + b a: X 2
b(a) i
b (a)4_ %r;iogggentﬁnd fl b [P:G}
unction ca b: 1
RV: 2

tip: take it a line at a time

3.1 #1

1 CF: G, K, 2
b(b): Global Frame:
return a + b a: XX 4
b(a) b » func b(b) |[P=G]
e f1: b [P-G]
b: 1
RV: 2
| | (2: b [P=G|
2treion | . b: 2
S RV:4 ta+h=2+2=4

tip: take it a line at a time

i

b(b):

return @ +|b
b(a)

b(a)

Make sure that
every frame has
a return value!

3.1 #1

CF: G, K, £

Global Frame:
a: XX 4
b

» func b(b) [P=G]

f il [P=G]
Juid
RV: 2

t2: b [P=G]
b2
RV: 4

tip: take it a line at a time

5.1 71

def curry2(h):
def f(x):
def g(y):
return h(x, Vy)
Frecirnmn g
return £
make adder = curry2(add)
add three = make adder(3)

five = add three(2)

tip: when you start doing a function call, remember where you were before

5.1 71

=P def curry2(h):

\{

make adder

def f(x):

def g(

y):

return h(x, y)

return g

return f

add three =

curry2(add)

make adder(3)

five = add three(2)

GG

Global Frame:

Hptipie oy func add (...)

add

curry2

»func curry2(h) [P = G

Parent 1s the current frame

tip: when you start doing a function call, remember where you were before

def f(x):

def g(y):

return h(x, y)

return g

Vireturn £

function call

= make adder = lcurry2(add)

add three = make adder(3)

five = add three(2)

\Qe:\
A
22308
6‘%‘2;&2\« %"3306§
O O\ Y
& 0Qx &‘&Q‘Q@@x‘%\ o

CF: G, 11

Global Frame:

Hptipie oy func add (...)

add

/ »func curry2(h) [P = G

curry2

1 curry2 [P =G
h

assign the parameters

Recall function calls:
Evaluate operator
and operands,
Create a new frame

1.

2
3.

Assign the

parameters in the

new frame

tip: when you start doing a function call, remember where you were before

o
»ao
22308
SR CF: G, f1
© WA e 2 ”
O B o °

\.&%6.%\‘&\x X
\06‘ \c}&' Y ‘ i‘zﬁ
‘Z“’%\js@ & Global Frame: func add (...)
=P def curry2(h) :, Inside curry2 hdid //
we define a curry2 »func curry2(h) [P = G|
new function,
—prdef f(x):|
What 1s 1t’s
parent!
def g(y):
1 curry2 [P =G
h
return h(x, y) f >func {/x) [P=f1]
Frecirnmn g
ety rn ot Recall function calls:
: 1. Evaluate operator
function call and operands,

— 2. Create a new frame
= make adder = curry2(add) T Ao Tt

parameters in the
add three = make adder(3) new frame

five = add three(2)

tip: when you start doing a function call, remember where you were before

K
N B
$xéi§‘&
& B O CF: G. K
O W@ 9
O B o o

DR
LR Global Frame: func add (...}
=P e f curry2(h): bidkd //
curry2 »func curry2(h) [P = G
wpdef f(x):
def g(y):
1 curry2 [P =G
h
return h(x, y) i ———func f{x) [P=fl]
RV:
Frecirnmn g
\ 4
=P return f
function call
=P nake adder = curry2(add) now we return the function we

just defined
add three = make adder(3)

five = add three(2)

tip: when you start doing a function call, remember where you were before

wpdef f(x):

def g(y):

return h(x, y)

return g

\/
T’return

assignment

3140 L
Global Frame: func add (...)
add //
curry2 »func curry2(h) [P = G

make_adder

1 curry2 [P =G \
h

f I:func fix): P =11
RV:

make adder

function call

curry2(add)

finally assign the value that

add three

five

make adder(3)

add three(2)

curry2 returned to make_adder

tip: when you start doing a function call, remember where you were before

=P def curry2(h):

wpdef f(x):
def g(y):

return h(x, y)

return g

\/
T’return

_>make_adder =

curry2(add)

function call

= 3.1 #2

CF: G, K, {2

Global Frame: I REEE= R e
i // 5
curry2 »func curry2(h) [P = G

make_adder

1 curry2 [P =G \
h

f I:func fix): P =11
RV:

e 34 g
i)

assign the parameters

=3 add three =

make adder(3)

five = add three(2)

tip: when you start doing a function call, remember where you were before

=P def curry2(h):

Inside f we
define a new
function, g.

I 58 f(X):/Whatisit’s
parent!
—Hdef g(y):

return h(x, y)

return g

\/
T’return

_>make_adder =

curry2(add)

function call

= 3.1 #2

CF: G, K, {2

Global Frame: I REEE= R e
i // 5
curry2 »func curry2(h) [P = G

make_adder

1 curry2 [P =G \
h

f qunc 1) [P =11
RV:
|pAwiaf f i
X
: »func gly) [P - 12

=3 add three =|make adder(3)

five = add three(2)

tip: when you start doing a function call, remember where you were before

wpdef f(x):

—Hdef g(y):

return h(x, y)

_E return g

T’return

_>make_adder =

curry2(add)

function call

5.1 71

CF: G, K, ¥

Global Frame: I REEE= R e
i // i
curry2 »func curry2(h) [P = G

make_adder

1 curry2 [P =G \
h

f I:func fix): P =11
RV:

e Sy s
X
g ——rtunc g(y) [P = £2]
RV:

=3 add three =

make adder(3)

five = add three(2)

now we return the function we

just defined

tip: when you start doing a function call, remember where you were before

wpdef f(x):
=P def g(y):

return h(x, y)

_E return g

T’return

_>make_adder = curry2(add)

-

~assignment

K
R
AKX B -
ORRR CF: G,), R
0 &e' DY ()

Global Frame: I REEE= R e
i "’//Ak i
curry2 »func curry2(h) [P = G

make_adder

add _three \

1 curry2 [P =G

h
§ ——>func fx) [P = f1]

RV: \

£2 £ [P = fl]

x: 3
4 ———>tunc g(y) [P = £2]

Tunction call

add three = | make adder(3)

finally, assign the return value

to add three

five = add three(2)

tip: when you start doing a function call, remember where you were before

=3 add three =

=P five

5.1 71

wpdef f(x):
=P def g(y):

return h(x, y)

_E return g

T’return

_>make_adder =

curry2(add)

make adder(3)

function call

add three(2)

CF: G, K

Global Frame: I REEE= R e
i // i
curry2 »func curry2(h) [P = G

make_adder

add _three \

1 curry2 [P =G

h
f < »func f(x) [P = 1]
RV: N
ekl
S THS
g e gly) [P - 2
RV:
(3g [P - 12
y: 2 assign the parameters

tip: when you start doing a function call, remember where you were before

Here we call

h(x, y) but we
—’d f f o do not draw a
5 LX) new frame
for it. Why?
I def g(y): What are x
and y?
return h(x, Vy)
_E return g
T’return
_>make_adder = curry2(add)

=3 add three = make adder(3)

function call
=P five =|add three(2)

5.1 71

CF: G, K

Global Frame: I REEE= R e
i // i
curry2 »func curry2(h) [P = G

make_adder

add _three \

1 curry2 [P =G

——>func fx) [P = f1]

RV: \

g — 3 fune gly) [P - 12]

tip: when you start doing a function call, remember where you were before

= Jef cu
—}def

\4

IEREE o~k o

=P nake a

=3 add th
- five =

rryv2(ih):
s .) | -

def g(y)

return the
result of

add(3,2)

5.1 71

CF: G, K

Global Frame: I REEE= R e
i // 5
curry2 »func curry2(h) [P = G

make_adder

add_ three

return h(x, y)

return g

urn £

dder =

Q4 1

curry2(add)

make adder(3)

function call

add three(2)

1 curry2 [P =G

——>func fx) [P = f1]

ekl
X
& >l et
RV:
1318 P = 421 Hipp s (o Warinple farnpd g B, 50
y: 2 we must look at its parent. It’s parent
RV:5 has x:3. So we do add(3, 2) = 5.

tip: when you start doing a function call, remember where you were before

\Q&QQ %O\@x\ (Bt
e)‘i (.\L &\ LQ/ 4
O O R

=P def curry2(h):

mpdef f(x):

def g(y):

return the
result of

add(3,2)
return h(x, y)

return g
v

Hrrreturn- f

_>make_adder = curry2(add)

=3 add three = make adder(3)

function call
=P five =|add three(2)

o
5CN
LN VN ¥

CF: G, K

Global Frame: I REEE= R e
i // i
curry2 »func curry2(h) [P = G

make_adder

add_ three
five: 5 \

1 curry2 [P =G

h
§ ——>func fx) [P = f1]

RV: \

e 34 g
i)

& >l et
RV:

1315 [P = 12]
y: 2
RV: 5

assignment

tip: when you start doing a function call, mark where you were before so that you know which line to go back to

