
FINAL REVIEW SOLUTIONS

CS Scholars

February 25 and February 27, 2017

Instructions: Your team is in charge of one of the following sections: Eval/Apply, Box
and Pointer, Environment Diagrams, Streams, Linked Lists, or Trees. You have 1 hour
to solve the question(s) in your section. In the last hour, you will present your solution.
Think about how you approached the question(s) (write down ideas!) and any other
helpful strategies you used to solve it.

Please take a look at all of the exercises after finishing your section. They are independent
of each other so order doesn’t matter. These problems are tough!

1 Eval/Apply

1. How many calls to scheme-eval? How many to scheme-apply?

1. (and 0 0 0 0 #f) 6, 0

2. (cond (#f (/ 1 1)) ((+ 0) mushrooms) (else (- 0 1)) 6, 1

3. (define (another-castle mario) (if (= mario 0) 0 (another-castle
(- mario 1)))) 1, 0

4. (let ((luigi another-castle) (bowser #f)) (or bowser (luigi 1)))
25, 4

5. What if we replace bowsers binding with #t? 5, 0

2 Box and Pointer

2. Lets cons-struct some Scheme lists! How would you represent the following lists with
box-and-pointer diagrams? Draw a diagram for each.

1. ’(1 2 (3) 4 (5 . 6))

2. ’(cons 1 (cons 2 (cons (1 . 2) nil)))

3. Assume cons-all takes a list of lists and inserts a value at the front of every list
(Problem 18, Scheme Project). Draw the box and pointer that results from executing
the code below.
(define (partitions n)

(define (part i lst)
(if (= i 0) lst
(part (- i 1) (cons (list i) (cons-all i lst))))

(part n nil))
(partitions 5)

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

3 Environment Diagrams

3.1 Questions

4. Draw an environment diagram for the following code.
b, c = 4, 5
def a(b):

start = a
def c():

nonlocal c, start
if start != 1:

start = 1
c, c = 1, c()

return b(2)
c()
return lambda y: c.append(1)

a(lambda x: [b + x])(3)

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

4 Streams

4.1 Questions

5. Suppose we have two streams S and T, where the elements of each sequence are rep-
resented as follows:

S = S0, S1, S2, . . .

T = T0, T1, T2, . . .

Now imagine each elements of the above stream paired up as shown in the infinite
matrix below:

(S0, T0) (S0, T1) (S0, T2) ...
(S1, T0) (S1, T1) (S1, T2) ...
(S2, T0) (S2, T1) (S2, T2) ...

...
...

... . . .

We wish to generate a stream that contains all the pairs in the array that lie on or
above the diagonal, i.e. the pairs:

(S0, T0) (S0, T1) (S0, T2) ...
(S1, T1) (S1, T2) ...

(S2, T2) ...
. . .

Now fill in the blanks to pairs, which takes two streams and outputs a stream of all
possible pairs of elements from these two streams above and including the diagonal.
For example, pairs(positives, positives) should return a stream starting with:

(1, 1), (1, 2), (2, 2), (1, 3), (2, 3), . . .

def pairs(s, t):

top = stream_map(lambda el: (s.first, el), t.rest)

rest = lambda: interleave(top , pairs(s.rest, t.rest))

return Stream((s.first, t.first) , rest)

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

5 Linked Lists

Here is the Link class, provided for your reference.
class Link:

empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

6. Reverse a shallow linked list.
def reverse(LL):

last = None

current = LL

while (current is not none):

nxt = current.rest

current.rest = last

last = current

current = nxt

return last

What is the runtime of your solution? Linear

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

6 Trees

Here is the Link class, provided for your reference.
class Tree(object):

""" A tree with internal values. """

def __init__(self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

7. In this problem, the input is a binary tree and the output is a list. The list is formed by
getting the rightmost entry first.
def tree_to_reversed_list(tree):

"""
>>> t = Tree(5, Tree(1, None, Tree(4)), Tree(7, Tree(6),

Tree(8)))
>>> tree_to_reversed_list(t)
[8, 7, 6, 5, 4, 1]
"""
lst = []

if tree is not None :

if tree.right :

lst.extend(tree to reversed list(tree.right))

lst.append(tree.entry)

if tree.left :

lst.extend(tree to reversed list(tree.left))

return lst

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

	Eval/Apply
	Box and Pointer
	Environment Diagrams
	Questions

	Streams
	Questions

	Linked Lists
	Trees

