LINKED LISTS AND TREES SOLUTIONS

CS Scholars

May 2, 2017

Linked Lists

Here is the Link class, provided for your reference:
class Link
empty = ()

Summary:

def

def

_ _init_ (self, first, rest = empty):

assert rest is Link.empty or isinstance (rest, Link)
self.first = first

self.rest = rest
__repr_ (self):
if self.rest is Link.empty
return "Link ({})".format (self.first)
else:
return "Link ({}, {})".format (self.first,self.rest)

e . first : first element (can be number or another linked list)

.rest : rest element (must be another linked list)
Link.empty : empty linked list
You can alter (mutate) a Link by changing a link’s first value or rest pointer.

Keep in mind if the function you are asked to write returns a new Link or alters the
provided one.

Note: Mutating does not necessarily imply that we return nothing!

1.1 Box and Pointer

1. Draw a box and pointer diagram that results from executing the code below.

1. From Brian Hou’s Quiz 6
1 = Link (0)
for e in range(l, 3):
1 = Link(e, Link (1, 1))
l.rest.rest.rest = l.rest

2. 1lnk = Link (1, Link (2, Link(3)))
def ml () :
x = 1lnk
def m2 (1nk) :
nonlocal x
if Ink is Link.empty:
return x
ret = m2(lnk.rest)
Ink.first, lnk.rest = x, lnk.empty
x = 1nk
return ret
return m2
p = ml() (1nk)

Ink:—m—

CS 61A Spring 2017:

3.a = Link (1, Link(2))
def x(1lnk):
if Ink is Link.empty:
return 1nk

y (1nk)

z = x(lnk.rest)

Ink.first = Link(lnk, 1lnk.first)

return z

def y(lnk):

b = a

Ink.first = Link.empty

while b != 1nk:
Ink.first = Link (b, 1lnk.first)
b = b.rest

return Ink.first

end = x(a)

CS 61A Spring 2017:

Trees

Here are the implementations of Tree and Binary Tree:
class Tree:
def = init_ (self, label, branches=[]):
for ¢ in branches:
assert isinstance(c, Tree)
self.label = label
self.branches = branches

def is_leaf (self):
return not self.branches

class BinTree:
empty = ()
def _ init_ (self, label, left=empty, right=empty):
self.label = label
self.left = left
self.right = right

1. Implement a function min_tree, which takes a tree t. It returns a new tree with
the exact same structure as t; at each node in the new tree, the entry is the smallest
number that is contained in that node’s subtrees or the corresponding node in t. Here
is an example input and output:

ONONNORO
def min_tree(t) :
if t.is_leaf():
return Tree (t.label)
mins = [min_tree(b) for b in t.branches]

return Tree (min([b.label for b in mins] + [t.label], mins)

CS 61A Spring 2017:

2. (From Brian Hou’s Quiz 6) We can represent the factorization of a number with a full
binary tree, a tree that has either two subtrees or none at all. Implement make factor
tree, which takes in an integer n that is greater than one and returns a tree that factors
n.

Example factor trees for 2 and 12 are shown below. The product of all leaves of a
factor tree must be n. There may be multiple valid factor trees.

(12) (12)
OO OO
©, 2 @ OXO

def factor(x):
// returns a factor of x or False if the only factors are 1
and x

def make_ factor_tree(n):
mmww

>>> six = make_factor_tree (6)

>>> print (six.branches[0].label, six.branches[1l].label)
2 3

>>> two = make_factor_tree (2)

>>> print (two.label, two.is_leaf())

2 True

fact = factor (n)

if fact:

return BinTree (n, make_factor_tree(fact),
make_ factor_tree(n//fact)

return BinTree (n)

CS 61A Spring 2017:

3. Write a function that converts a Binary Tree to a Linked List, as shown:

’ 1_*}1 3 |
@) (® : o

def convert (t):

if t is BinTree.empty:

return Link.empty

right = convert (t.right)

left = convert (t.left)

return Link (t.label, Link(left, right))

CS 61A Spring 2017:

4. (From Summer 2016 Final) Caught-Ya

Implement the function catch up, which takes in two linked lists of integers Ink1 and
Ink2 and mutates the linked list with the lower sum by repeatedly inserting 1 at the
end until the sums are equal. See the doctests for details. You may assume that the
two linked lists that are passed in are non-empty and have the same length. The Link
class is provided for your reference. Hint: You may need the ternary operator if else.
def catch_up(lnkl, 1nk2):

>>> odds = Link (1, Link (3, Link (5, Link(7))))

>>> evens = Link (2, Link (4, Link (6, Link(8))))

>>> catch_up(odds, evens)

>>> print (odds) # odds is mutated

<l 3571111>

>>> print (evens)

<2 4 6 8 >

def catcher(linkl, 1link2, suml, sum2):

suml + linkl.first

suml

sum2 = sum?2 + link2.first

if linkl.rest is Link.empty:

lower = linkl if suml < sum2?2 else 1link2
for _ in range (abs(suml - sum2)):
lower.rest = Link (1)
lower = lower.rest
else:

catcher (linkl.rest, link2.rest, suml, sum2)

catcher (1nkl, 1nk2, 0, 0)

CS 61A Spring 2017:

5. Define the function min leaf depth, which takes in a tree t and returns the minimum
depth of any of the leaves in t. Recall that the depth of a node is defined as how far
away that node is from the root. See the doctests for details.

Hint: You may find the built-in min function useful.
def min_leaf_depth (t):

>>>
>>>
0

>>>
>>>

>>>
>>>
1
>>>
>>>
2

tl = Tree (2)
min_leaf_ depth (tl)

t2 = Tree(2, [Tree(0), Tree(l), Tree(6)])
min_leaf_ depth(t2)

t3 = Tree (2, [Tree(0), t21)
min_leaf_depth (t3)

td4d = Tree(2, [t2, t3])
min_leaf_depth (t4)

if t.is_leaf():

return 0

else:

c_depths = [min_leaf depth(b) for b in t.branches]

return 1 + min(c_depths)

CS 61A Spring 2017:

	Linked Lists
	Box and Pointer

	Trees

