
CS 61A Structure and Interpretation of Computer Programs
Spring 2017 Solutions Mock Final

INSTRUCTIONS

• You have 1 hour to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5” × 11” cheat sheet
of your own creation.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

Instructional account (cs61a-_)

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (10 points) On My Way to San Jose
For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. If an error occurs, write “Error”. The first box has been filled in for you.
Assume that the Link class has been defined. Assume that you have started python3 and executed the follow-
ing: statements:

class City:

num = 0

def __init__(self , name , \

pop , people =[]):

self.name = name

self.pop = pop

self.people = list(people)

self.num += 1

class Place(City):

lnk = Link.empty

def __init__(self , name , city=None):

self.name = name

self.city = city

lnk = self.lnk

while lnk != Link.empty:

lnk = lnk.rest

lnk = self

class People:

def __init__(self ,place ,name ,first =0):

self.place = place

self.name = name

if not first:

self.friend=People(self.place , \

"Friend", 1)

print(self.place.city)

self.place.city.people.append(self)

def goto(self , place):

self.place = place

print(self.name+" is at "+place.name)

san jose = City("San Jose", 1)

tech museum = Place("Tech Museum", san jose)

steve, bob = People(tech museum, "Steve"), People(Place("Library", san jose), "bob")

Name: 3

len(Place.lnk)

0

san_jose.goto = People.goto

san_jose.goto(tech_museum)

ERROR

bob.goto(tech_museum)

bob is at Tech Museum

san_jose.goto = steve.goto

san_jose.goto(tech_museum)

Steve is at Tech Museum

print(bob.goto(san_jose))

bob is at Tech Museum
None

berkeley = City("Berkeley", 2, \

[steve , bob])

City.num

0

People.__init__(san_jose , \

san_jose , "Yali’s")

ERROR

san_jose.name

”Yali’s”

berkeley.people [0] == \

san_jose.people [1]

True

san_jose.city = san_jose

People.__init__(san_jose , \

san_jose , "Yali’s")

Object
Object

san_jose.name

”Yali’s”

[i.name for i in berkeley.people]

[”Steve”, ”bob”]

4

2. (10 points) Aaaaaaaaaaaa

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Name: 5

6

3. (10 points) Scheme-ing Merge Given two sorted lists, lst1 and lst2, return a list that sorts both in as-
cending order. Break ties in any way you wish.

(define (merge lst1 lst2)

(cond ((___________________) ____________________________________)

((___________________) ____________________________________)

((___________________) ____________________________________)

(else (___))))

;Solution:

(define (merge lst1 lst2)

(cond ((null? lst1) lst2)

((null? lst2) lst1)

((<= (car lst1) (car lst2)) (cons (car lst1) (merge (cdr lst1) lst2)))

(else (cons (car lst2) (merge (cdr lst2) lst1)))

)

)

4. (10 points) Scheme-ing to Find a Path
Here is the BinTree class provided for your reference:

class BinTree:

empty = ()

def __init__(self , label , left=empty , right=empty):

self.label = label

self.left = left

self.right = right

Given a binary search tree and an entry, return the path in order to reach the entry from the root in the form
of a list.

def pathfinder(bst , entry):

"""

>>> bintree = BinTree(4, BinTree(2, BinTree (1)), BinTree (5))

>>> pathfinder(bst , 2)

[4, 2]

>>> pathfinder(bst , 1)

[4, 2, 1]

"""

if __:

__

elif __:

__

Name: 7

elif __:

return __

else:

return ___

Solution:

def pathfinder(bst , entry):

if bst is BinTree.emtpy:

return []

if bst.label == entry:

return [bst.label]

elif bst.left > entry:

return [bst.label] + pathfinder(bst.left , entry)

else:

return [bst.label] + pathfinder(bst.right , entry)

8

5. (10 points) Homework Party: The SQL

You are a veteran at RuneSQL, a popular RPG (role-playing game) where you hone your skills to become the
best player in the database! However, you are a little short on SUPER DUPER EPIC RARE 61A homework
party hats. Other players (a.k.a. n00bs) are fortunately predictable. Through your many years of being a
crafty RuneSQL economist, you have taken note of the trends in hat prices. The following chart shows the
price per unit (in millions of RuneSQL coins) and quantity for a batch offer of party hats at a certain time (in
minutes).

hat prices

time price quantity

0 0.5 20
30 .3 10
60 0.75 40
90 0.7 25
120 1.3 25
150 1.25 30
180 0.4 5
210 0.45 10

Theres a catch! You will have to wait 1 hour after buying a single batch of hats or n00bs will get suspicious
and market prices will change. Write a SQL select statement to show you the path to the maximum number
of hats you can buy for 50 million coins, your current budget.

-- Expected result:

-- 0, 60, 210|70

WITH paths(path , prev_time , units , money) as (

SELECT __

FROM hat_prices UNION

SELECT __

__

FROM hat_prices , paths

WHERE money >= 0 and time - prev_time > 30

)

SELECT _________________________ FROM _________________________;

Solution:

WITH paths(path , prev_time , units , money) as (

SELECT time , time , quantity , 50-price*quantity FROM hat_prices UNION

SELECT path || , || time , time , units + quantity ,

money - price * quantity FROM hat_prices , paths

WHERE money >= 0 and time - prev_time > 30

)

