Quiz 1

CS Scholars

February 28 and March 2, 2017

1. Write a function, 1ooper that takes in a list of functions. It returns a function that takes
in one argument, x and applies a function from 1st to x. Please ignore the commented
out line (it will be used in Problem 2).
def looper(lst):

wmwn

>>>
>>>
>>>
1 #
>>>
4 4
>>>
4 #
>>>
3 #

wmmwn

def

a, b, ¢ = lambda x: x, lambda x: x = 2, lambda x: x + 1
actual_loop = looper([a, b, c])

actual_loop (1)

1

actual_loop(2)

2 * 2

actual_loop (3)

3+ 1

actual_loop (3)

3

actual_loop (x) :
nonlocal 1st

f = 1lst.pop(0)

keep_count (f)

Ist = 1st[1l:] + [1lst[0]]

return (x)

return actual_loop

2. Challenge: Now augment the code above so that we also keep track of how many times
each function in 1st was called. Assume that actual_loop behaves correctly. Now
assume that keep_count (£) from the code above is uncommented. Fill in the function
keep_count so that it also keeps track of how times each function was called. Write a
function count that takes in a function and returns the number of times it was called.
def looper (lst):

nun
>>>
>>>
>>>

0
>>>

>>>

>>>

>>>

>>>

3

>>>
2

nmuon

a, b, ¢ = lambda x: x, lambda x: x x 2, lambda x: x + 1

actual_loop, counter = looper(la, b,
counter (a)

actual_loop (1)

counter (a)

actual_loop (2)

actual_loop (3)

actual_loop (3)

counter (a)

counts = {}

def

def

def

actual_loop(x) :

cl)

assume correctly behaves as described in problem 1

keep_count () :

counts[f] = counts[f] + 1 if £ in counts else O

count (f) :

return counts[f] if f in counts else 0

return actual_loop, count

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

