

CS SCHOLARS SEMINAR

February 28 and March 2, 2017

1. Write a function, 1ooper that takes in a list of functions. It returns a function that takes
in one argument, x and applies a function from 1st to x. Please ignore the commented
out line (it will be used in Problem 2).
def looper(lst):

wmon

>>>
>>>
>>>
1 #
>>>
4 #
>>>
4 #
>>>
3 4

wmwn

def

a, b, ¢ = lambda x: x, lambda x: x * 2, lambda x: x + 1
actual_loop = looper([a, b, c])

actual_loop (1)

1

actual_loop(2)

2 % 2

actual_loop (3)

3+ 1

actual_loop (3)

3

actual_loop(x) :

keep_count (f)

lst =

return

return actual_loop

2. Challenge: Now augment the code above so that we also keep track of how many times
each function in 1st was called. Assume that actual_loop behaves correctly. Now
assume that keep_count (£) from the code above is uncommented. Fill in the function
keep_count so that it also keeps track of how times each function was called. Write a
function count that takes in a function and returns the number of times it was called.
def looper (lst):

wmon

>>> a, b, ¢ = lambda x: x, lambda x: x * 2, lambda x: x + 1
>>> actual_loop, counter = looper ([a, b, cl)
>>> counter (a)

0

>>> actual_loop (1)

1

>>> counter (a)

1

>>> actual_loop(2)

4

>>> actual_loop (3)

4

>>> actual_loop(3)

3

>>> counter (a)

2

mmwn

counts =

def actual_loop(x):
assume correctly behaves as described in problem 1

def keep_count (f):

def count (f) :

return actual_loop, count

CS 61A Spring 2017: Michael Gibbes, Walt Leung, Katya Stukalova

